Contents

VMware vCloud Director Installation and Upgrade Guide 5

1 Overview of vCloud Director Installation, Configuration, and Upgrade 7
 vCloud Director Architecture 7
 Configuration Planning 8
 vCloud Director Hardware and Software Requirements 9

2 Creating a vCloud Director Server Group 27
 Install and Configure vCloud Director Software on the First Member of a Server Group 28
 Configure Network and Database Connections 30
 Install vCloud Director Software on Additional Members of a Server Group 34
 Install Microsoft Sysprep Files on the Servers 35
 Start or Stop vCloud Director Services 36
 Uninstall vCloud Director Software 37

3 Upgrading vCloud Director 39
 Use the Cell Management Tool to Quiesce and Shut Down a Server 41
 Upgrade vCloud Director Software on Any Member of a Server Group 42
 Upgrade the vCloud Director Database 44
 Upgrade the Existing vShield Manager or NSX Manager That Is Associated with an Attached vCenter Server System 47
 Upgrade vCenter Server Systems, Hosts, and vShield Edge Appliances 48

4 vCloud Director Setup 51
 Review the License Agreement 52
 Enter the License Key 52
 Create the System Administrator Account 52
 Specify System Settings 52
 Ready to Log In to vCloud Director 53

5 Cell Management Tool Reference 55
 Managing a Cell 56
 Exporting Database Tables 57
 Detecting and Repairing Corrupted Scheduler Data 60
 Replacing SSL Certificates 60
 Generating Self-Signed SSL Certificates 61
 Managing the List of Allowed SSL Ciphers 62
 Managing the List of Allowed SSL Protocols 64
 Configuring the Metrics Database Connection 65
 Recovering the System Administrator Password 66
 Update the Failure Status of a Task 66
6 Install and Configure Optional Database Software to Store and Retrieve Historic Virtual Machine Performance Metrics 69

Index 71
The VMware vCloud Director Installation and Upgrade Guide provides information about installing or upgrading VMware vCloud Director software and configuring it to work with VMware vCenter™ to provide VMware-ready VMware vCloud services.

Intended Audience

The VMware vCloud Director Installation and Upgrade Guide is intended for anyone who wants to install or upgrade VMware vCloud Director software. The information in this book is written for experienced system administrators who are familiar with Linux, Windows, IP networks, and VMware vSphere®.
A VMware vCloud® combines a vCloud Director server group with the vSphere platform. You create a vCloud Director server group by installing vCloud Director software on one or more servers, connecting the servers to a shared database, and integrating the vCloud Director server group with vSphere.

The initial configuration of vCloud Director, including database and network connection details, is established during installation. When you upgrade an existing installation to a new version of vCloud Director, you update the vCloud Director software and database schema, leaving the existing relationships between servers, the database, and vSphere in place.

This chapter includes the following topics:

- “vCloud Director Architecture,” on page 7
- “Configuration Planning,” on page 8
- “vCloud Director Hardware and Software Requirements,” on page 9

vCloud Director Architecture

A vCloud Director server group consists of one or more vCloud Director servers. These servers share a common database, and are linked to an arbitrary number of vCenter Server systems and ESXi hosts. Network services are provided to the vCenter Server systems and vCloud Director by the VMware vShield Manager™ component from VMware vCloud® Networking and Security™ or by the VMware NSX Manager™ component from VMware NSX™ for vSphere®.

A typical installation creates a vCloud Director server group comprising several servers. Each server in the group runs a collection of services called a vCloud Director cell. All members of the group share a single database. Each cell in the group connects to multiple vCenter Server systems, the hosts that they manage, and each vShield Manager or NSX Manager that is configured to support each connected vCenter Server system.
vCloud Director Installation and Upgrade Guide

Figure 1.1. vCloud Director Architecture Diagram for an Installation That Uses vShield Manager

The vCloud Director installation and configuration process creates the cells, connects them to the shared database, and establishes the first connections to a vCenter Server system, that vCenter Server system’s associated vShield Manager or NSX Manager, and its hosts. A system administrator can then use the vCloud Director Web Console to add vCenter Server systems, the vShield Manager or NSX Manager associated with the added vCenter Server system, and the added vCenter Server system’s hosts to the vCloud Director server group at any time.

Configuration Planning

vSphere provides storage, compute, and networking capacity to vCloud Director. Before you begin installation, consider how much vSphere and vCloud Director capacity you need, and plan a configuration that can support it.

Configuration requirements depend on many factors, including the number of organizations in the cloud, the number of users in each organization, and the activity level of those users. The following guidelines can serve as a starting point for most configurations:

- Allocate one vCloud Director server (cell) for each vCenter Server system that you want to make accessible in your cloud.
- Be sure that all vCloud Director servers meet at least the minimum requirements for memory and storage detailed in “vCloud Director Hardware and Software Requirements,” on page 9.
- Configure the vCloud Director database as described in “Installing and Configuring a vCloud Director Database,” on page 15.
vCloud Director Hardware and Software Requirements

Each server in a vCloud Director server group must meet certain hardware and software requirements. In addition, a supported database must be accessible to all members of the group. Each server group requires access to a vCenter server, a vShield Manager or NSX Manager, and one or more ESXi hosts.

Supported Platforms

Current information about the VMware platforms supported by this release of vCloud Director is available from the VMware Product Interoperability Matrixes at http://partnerweb.vmware.com/comp_guide/sim/interop_matrix.php.

vSphere Configuration Requirements

Servers and hosts intended for use with vCloud Director must meet specific configuration requirements:

- vCenter networks intended for use as vCloud Director external networks or network pools must be available to all hosts in any cluster intended for vCloud Director to use. Making these networks available to all hosts in a datacenter simplifies the task of adding new vCenter servers to vCloud Director.

- vSphere Distributed Switches must be used for cross-host fencing and network pool allocation.

- vCenter clusters used with vCloud Director must configure storage DRS with an automation level of **Fully Automated**. This configuration requires shared storage attached to all ESXi hosts in a DRS cluster. vCloud Director can take full advantage of Storage DRS, including support for fast provisioning.

- vCenter servers must trust their hosts. All hosts in all clusters managed by vCloud Director must be configured to require verified host certificates. In particular, you must determine, compare, and select matching thumbprints for all hosts. See Configure SSL Settings in the vCenter Server and Host Management documentation.

vSphere Licensing Requirements

vCloud Director requires the following vSphere licenses:

- VMware DRS, licensed by vSphere Enterprise and Enterprise Plus.

- VMware Distributed Switch and dvFilter, licensed by vSphere Enterprise Plus. This license enables creation and use of vCloud Director isolated networks.
Supported vCloud Director Server Operating Systems

Table 1-1. Supported vCloud Director Server Operating Systems

<table>
<thead>
<tr>
<th>Operating System (64-bit only)</th>
<th>Updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CentOS 6</td>
<td>4</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 5</td>
<td>4-10</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 6</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Disk Space Requirements

Each vCloud Director server requires approximately 1450MB of free space for the installation and log files.

Memory Requirements

Each vCloud Director server must be provisioned with at least 4GB of memory.

Linux Software Packages

Each vCloud Director server must include installations of several common Linux software packages. These packages are typically installed by default with the operating system software. If any are missing, the installer fails with a diagnostic message.

Table 1-2. Required Software Packages

<table>
<thead>
<tr>
<th>Package Name</th>
<th>Package Name</th>
<th>Package Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>alsa-lib</td>
<td>libICE</td>
<td>module-init-tools</td>
</tr>
<tr>
<td>bash</td>
<td>libSM</td>
<td>net-tools</td>
</tr>
<tr>
<td>chkconfig</td>
<td>libstdc</td>
<td>pciutils</td>
</tr>
<tr>
<td>coreutils</td>
<td>libX11</td>
<td>procps</td>
</tr>
<tr>
<td>findutils</td>
<td>libXau</td>
<td>redhat-lsb</td>
</tr>
<tr>
<td>glibc</td>
<td>libXdmcp</td>
<td>sed</td>
</tr>
<tr>
<td>grep</td>
<td>libXext</td>
<td>tar</td>
</tr>
<tr>
<td>initscripts</td>
<td>libXi</td>
<td>which</td>
</tr>
<tr>
<td>krb5-libs</td>
<td>libXt</td>
<td></td>
</tr>
<tr>
<td>libgcc</td>
<td>libXtst</td>
<td></td>
</tr>
</tbody>
</table>

NOTE Several procedures for configuring network connections and creating SSL certificates require the use of the Linux `nslookup` command, which is available in the Linux `bind-utils` package.

Supported vCloud Director Databases

vCloud Director supports Oracle and Microsoft SQL Server databases. The most current information about supported databases for this release of vCloud Director is available from the VMware Product Interoperability Matrixes located in VMware Partner Central. Log in to VMware Partner Central using your VMware Partner account information.

For recommended database server configurations, see “Installing and Configuring a vCloud Director Database,” on page 15.
Supported LDAP Servers

Table 1-3. Supported LDAP Servers

<table>
<thead>
<tr>
<th>Platform</th>
<th>LDAP Server</th>
<th>Authentication Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003</td>
<td>Active Directory</td>
<td>Simple, Simple SSL, Kerberos, Kerberos SSL</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>Active Directory</td>
<td>Simple</td>
</tr>
<tr>
<td>Windows 7 (2008 R2)</td>
<td>Active Directory</td>
<td>Simple, Simple SSL, Kerberos, Kerberos SSL</td>
</tr>
<tr>
<td>Linux</td>
<td>OpenLDAP</td>
<td>Simple, Simple SSL</td>
</tr>
</tbody>
</table>

Guest OS Support

See the vCloud Director User’s Guide for a list of supported guest operating systems.

Supported Databases for Storing Historic Metric Data

You can configure your vCloud Director installation to store metrics that vCloud Director collects about virtual machine performance and resource consumption. Data for historic metrics is stored in a KairosDB database backed by Cassandra. See Chapter 6, “Install and Configure Optional Database Software to Store and Retrieve Historic Virtual Machine Performance Metrics,” on page 69 for more information.

vCloud Director supports the following KairosDB and Cassandra versions.

- KairosDB 0.9.1
- Cassandra 1.2 and 2.0

Browsers That vCloud Director Supports

The vCloud Director Web Console is compatible with recent versions of Google Chrome, Mozilla Firefox, and Microsoft Internet Explorer.

NOTE The vCloud Director Web Console is compatible only with 32-bit browsers. When a browser is listed as supported on a 64-bit platform, use of a 32-bit browser on the 64-bit platform is implied.

Browser Support on Linux Platforms

On these Linux platforms, the vCloud Director Web Console is compatible with the most recent version of Mozilla Firefox and Google Chrome, and with their immediate predecessor versions.

Table 1-4. Browser Support and Operating System Compatibility on Linux Platforms

<table>
<thead>
<tr>
<th>Platform</th>
<th>Google Chrome</th>
<th>Mozilla Firefox</th>
</tr>
</thead>
<tbody>
<tr>
<td>CentOS 6.x</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 6.x</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Ubuntu 12.x</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Browser Support on Windows Platforms

On Windows platforms, the vCloud Director Web Console is compatible with at least one version of Microsoft Internet Explorer. Some Windows platforms are also compatible with the most recent version of Mozilla Firefox and Google Chrome, and with their immediate predecessor versions.
<table>
<thead>
<tr>
<th>Platform</th>
<th>Google Chrome</th>
<th>Mozilla Firefox</th>
<th>Internet Explorer 8.x</th>
<th>Internet Explorer 9.x</th>
<th>Internet Explorer 10.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows XP Pro</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Windows Server 2003</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Enterprise Edition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Windows Vista</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Windows 7</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Windows 8</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Browser Support on Macintosh Platforms

On Macintosh platforms, the vCloud Director Web Console is compatible with the most recent version of Mozilla Firefox and Google Chrome, and with their immediate predecessor versions.

Supported Versions of Adobe Flash Player

The vCloud Director Web Console requires Adobe Flash Player 11.2 or later. Only the 32-bit version is supported.

Supported Versions of Java

vCloud Director clients must have JRE 1.6.0 update 10 or later installed and enabled. Only the 32-bit version is supported.

Supported Security Protocols and Cipher Suites

vCloud Director requires clients connections to be secure. SSL version 3 has been found to have serious security vulnerabilities, and is no longer one of the default set of protocols that the server offers to use when making a client connection. The following security protocols are supported:

- TLS version 1.0
- TLS version 1.1
- TLS version 1.2

You can use the `cell-management-tool` to reconfigure the default set of protocols. See "Managing the List of Allowed SSL Protocols," on page 64.

Supported cipher suites include those with RSA, DSS, or Elliptic Curve signatures and DES3, AES-128, or AES-256 ciphers. You can use the `cell-management-tool` to reconfigure the set of supported SSL ciphers. See "Managing the List of Allowed SSL Ciphers," on page 62.
Summary of Network Configuration Requirements for vCloud Director

Secure, reliable operation of vCloud Director depends on a secure, reliable network that supports forward and reverse lookup of hostnames, a network time service, and other services. Your network must meet these requirements before you begin installing vCloud Director.

The network that connects vCloud Director servers, the database server, vCenter servers, and the associated vCloud Networking and Security or NSX for vSphere components, must meet several requirements:

IP addresses

Each vCloud Director server requires two IP addresses, so that it can support two different SSL connections. One connection is for the HTTP service. The other is for the console proxy service. You can use IP aliases or multiple network interfaces to create these addresses. You cannot use the Linux `ip addr add` command to create the second address.

Console Proxy Address

The IP address configured as the console proxy address must not be located behind an SSL-terminating load balancer or reverse proxy. All console proxy requests must be relayed directly to the console proxy IP address.

Network Time Service

You must use a network time service such as NTP to synchronize the clocks of all vCloud Director servers, including the database server. The maximum allowable drift between the clocks of synchronized servers is 2 seconds.

Server Time Zones

All vCloud Director servers, including the database server, must be configured to be in the same time zone.

Hostname Resolution

All host names that you specify during installation and configuration must be resolvable by DNS using forward and reverse lookup of the fully qualified domain name or the unqualified hostname. For example, for a host named vcloud.example.com, both of the following commands must succeed on a vCloud Director host:

```
nslookup vcloud
nslookup vcloud.example.com
```

In addition, if the host vcloud.example.com has the IP address 192.168.1.1, the following command must return vcloud.example.com:

```
nslookup 192.168.1.1
```

Transfer Server Storage

To provide temporary storage for uploads, downloads, and catalog items that are published or subscribed externally, you must make an NFS or other shared storage volume accessible to all servers in a vCloud Director server group. When NFS is used for the transfer server storage, certain configuration settings must set so that each vCloud Director cell in the vCloud Director server group can mount and use the NFS-based transfer server storage. See http://kb.vmware.com/kb/2086127 for details. Each member of the server group must mount this volume at the same mountpoint, typically `/opt/vmware/vcloud-director/data/transfer`. Space on this volume is consumed in two ways:

- Transfers (uploads and downloads) occupy this storage for as long as the transfer is in progress, and are removed when the transfer is complete. Transfers that make no progress for 60 minutes are marked as expired and cleaned up by the system. Because transferred images can be large, it is a good practice to allocate at least several hundred gigabytes for this use.
Catalog items in catalogs that are published externally and enable caching of published content occupy this storage for as long as they exist. (Items from catalogs that are published externally but do not enable caching do not occupy this storage.) If you enable organizations in your cloud to create catalogs that are published externally, it is safe to assume that hundreds or even thousands of catalog items will need space on this volume, and that each catalog item will be the size of a virtual machine in compressed OVF form.

NOTE If possible, the volume you use for transfer server storage should be one whose capacity can be easily expanded.

Network Security Recommendations

Secure operation of vCloud Director requires a secure network environment. Configure and test this network environment before you begin installing vCloud Director.

Connect all vCloud Director servers to a network that is secured and monitored. vCloud Director network connections have several additional requirements:

- Do not connect vCloud Director directly to the public Internet. Always protect vCloud Director network connections with a firewall. Only port 443 (HTTPS) must be open to incoming connections. Ports 22 (SSH) and 80 (HTTP) can also be opened for incoming connections if needed. In addition, the cell-management-tool requires access to the cell’s loopback address. All other incoming traffic from a public network must be rejected by the firewall.

Table 1-6. Ports That Must Allow Incoming Packets From vCloud Director Hosts

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>TCP, UDP</td>
<td>NFS portmapper used by transfer service</td>
</tr>
<tr>
<td>920</td>
<td>TCP, UDP</td>
<td>NFS rpc.statd used by transfer service</td>
</tr>
<tr>
<td>61611</td>
<td>TCP</td>
<td>ActiveMQ</td>
</tr>
<tr>
<td>61616</td>
<td>TCP</td>
<td>ActiveMQ</td>
</tr>
</tbody>
</table>

- Do not connect the ports used for outgoing connections to the public network.

Table 1-7. Ports That Must Allow Outgoing Packets From vCloud Director Hosts

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>TCP, UDP</td>
<td>SMTP</td>
</tr>
<tr>
<td>53</td>
<td>TCP, UDP</td>
<td>DNS</td>
</tr>
<tr>
<td>111</td>
<td>TCP, UDP</td>
<td>NFS portmapper used by transfer service</td>
</tr>
<tr>
<td>123</td>
<td>TCP, UDP</td>
<td>NTP</td>
</tr>
<tr>
<td>389</td>
<td>TCP, UDP</td>
<td>LDAP</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>vCenter, vShield Manager, NSX Manager, and ESX connections</td>
</tr>
<tr>
<td>514</td>
<td>UDP</td>
<td>Optional. Enables syslog use.</td>
</tr>
<tr>
<td>902</td>
<td>TCP</td>
<td>vCenter and ESX connections.</td>
</tr>
<tr>
<td>903</td>
<td>TCP</td>
<td>vCenter and ESX connections.</td>
</tr>
<tr>
<td>920</td>
<td>TCP, UDP</td>
<td>NFS rpc.statd used by transfer service.</td>
</tr>
<tr>
<td>1433</td>
<td>TCP</td>
<td>Default Microsoft SQL Server database port.</td>
</tr>
</tbody>
</table>
Table 1-7. Ports That Must Allow Outgoing Packets From vCloud Director Hosts (Continued)

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1521</td>
<td>TCP</td>
<td>Default Oracle database port.</td>
</tr>
<tr>
<td>5672</td>
<td>TCP, UDP</td>
<td>Optional. AMQP messages for task extensions.</td>
</tr>
<tr>
<td>61611</td>
<td>TCP</td>
<td>ActiveMQ</td>
</tr>
<tr>
<td>61616</td>
<td>TCP</td>
<td>ActiveMQ</td>
</tr>
</tbody>
</table>

- Route traffic between vCloud Director servers and the vCloud Director database server over a dedicated private network if possible.
- Virtual switches and distributed virtual switches that support provider networks must be isolated from each other. They cannot share the same level 2 physical network segment.

Installing and Configuring a vCloud Director Database

vCloud Director cells use a database to store shared information. This database must exist before you can complete installation and configuration of vCloud Director software.

NOTE Regardless of the database software you choose, you must create a separate, dedicated database schema for vCloud Director to use. vCloud Director cannot share a database schema with any other VMware product.

Configure an Oracle Database

Oracle databases have specific configuration requirements when you use them with vCloud Director. Install and configure a database instance and create the vCloud Director database user account before you install vCloud Director.

Procedure

1. Configure the database server.

 A database server configured with 16GB of memory, 100GB storage, and 4 CPUs should be adequate for most vCloud Director clusters.

2. Create the database instance.

 Use a command of the following form to create a single CLOUD_DATA tablespace:

   ```
   Create Tablespace CLOUD_DATA datafile '$ORACLE_HOME/oradata/cloud_data01.dbf' size 1500M autoextend on;
   ```

3. Create the vCloud Director database user account.

 The following command creates database user name vcloud with password vcloudpass.

   ```
   Create user $vcloud identified by $vcloudpass default tablespace CLOUD_DATA;
   ```

 NOTE When you create the vCloud Director database user account, you must specify CLOUD_DATA as the default tablespace.
4 Configure database connection, process, and transaction parameters.

The database must be configured to allow at least 75 connections per vCloud Director cell plus about 50 for Oracle's own use. You can obtain values for other configuration parameters based on the number of connections, where C represents the number of cells in your vCloud Director cluster.

<table>
<thead>
<tr>
<th>Oracle Configuration Parameter</th>
<th>Value for C Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECTIONS</td>
<td>75*C+50</td>
</tr>
<tr>
<td>PROCESSES</td>
<td>= CONNECTIONS</td>
</tr>
<tr>
<td>SESSIONS</td>
<td>= PROCESSES*1.1+5</td>
</tr>
<tr>
<td>TRANSACTIONS</td>
<td>= SESSIONS*1.1</td>
</tr>
<tr>
<td>OPEN_CURSORS</td>
<td>= SESSIONS</td>
</tr>
</tbody>
</table>

5 Create the vCloud Director database user account.

Do not use the Oracle system account as the vCloud Director database user account. You must create a dedicated user account for this purpose. Grant the following system privileges to the account:

- CONNECT
- RESOURCE
- CREATE TRIGGER
- CREATE TYPE
- CREATE VIEW
- CREATE MATERIALIZED VIEW
- CREATE PROCEDURE
- CREATE SEQUENCE

6 Note the database service name so you can use it when you configure network and database connections.

To find the database service name, open the file $ORACLE_HOME/network/admin/tnsnames.ora on the database server and look for an entry of the following form:

```
(SERVICE_NAME = orcl.example.com)
```

Configure a Microsoft SQL Server Database

SQL Server databases have specific configuration requirements when you use them with vCloud Director. Install and configure a database instance, and create the vCloud Director database user account before you install vCloud Director.

vCloud Director database performance is an important factor in overall vCloud Director performance and scalability. vCloud Director uses the SQL Server `tmpdb` file when storing large result sets, sorting data, and managing data that is being concurrently read and modified. This file can grow significantly when vCloud Director is experiencing heavy concurrent load. It is a good practice to create the `tmpdb` file on a dedicated volume that has fast read and write performance. For more information about the `tmpdb` file and SQL Server performance, see http://msdn.microsoft.com/en-us/library/ms175527.aspx.

Prerequisites

- You must be familiar with Microsoft SQL Server commands, scripting, and operation.
- To configure Microsoft SQL Server, log on to the SQL Server host computer using administrator credentials. You can configure SQL server to run with the LOCAL_SYSTEM identity, or any identity with the privilege to run a Windows service.
Procedure

1. Configure the database server.

A database server configured with 16GB of memory, 100GB storage, and 4 CPUs should be adequate for most vCloud Director clusters.

2. Specify Mixed Mode authentication during SQL Server setup.

Windows Authentication is not supported when using SQL Server with vCloud Director.

3. Create the database instance.

The following script creates the database and log files, specifying the proper collation sequence.

```
USE [master]
GO
CREATE DATABASE [vcloud] ON PRIMARY
(NAME = N'vcloud', FILENAME = N'C:\vcloud.mdf', SIZE = 100MB, FILEGROWTH = 10%)
LOG ON
(NAME = N'vcdb_log', FILENAME = N'C:\vcloud.ldf', SIZE = 1MB, FILEGROWTH = 10%)
COLLATE Latin1_General_CS_AS
GO
```

The values shown for SIZE are suggestions. You might need to use larger values.

4. Set the transaction isolation level.

The following script sets the database isolation level to READ_COMMITTED_SNAPSHOT.

```
USE [vcloud]
GO
ALTER DATABASE [vcloud] SET SINGLE_USER WITH ROLLBACK IMMEDIATE;
ALTER DATABASE [vcloud] SET ALLOW_SNAPSHOT_ISOLATION ON;
ALTER DATABASE [vcloud] SET READ_COMMITTED_SNAPSHOT ON WITH NO_WAIT;
ALTER DATABASE [vcloud] SET MULTI_USER;
GO
```

For more about transaction isolation, see http://msdn.microsoft.com/en-us/library/ms173763.aspx.

5. Create the vCloud Director database user account.

The following script creates database user name vcloud with password vcloudpass.

```
USE [vcloud]
GO
CREATE LOGIN [vcloud] WITH PASSWORD = 'vcloudpass', DEFAULT_DATABASE =[vcloud],
    DEFAULT_LANGUAGE = [us_english], CHECK_POLICY=OFF
GO
CREATE USER [vcloud] for LOGIN [vcloud]
GO
```

6. Assign permissions to the vCloud Director database user account.

The following script assigns the db_owner role to the database user created in Step 5.

```
USE [vcloud]
GO
sp_addrolemember [db_owner], [vcloud]
GO
```
Create SSL Certificates

vCloud Director uses SSL to secure communications between clients and servers. Before you install and configure a vCloud Director server group, you must create two certificates for each member of the group and import the certificates into host keystores.

Each vCloud Director server requires two IP addresses, so that it can support two different SSL endpoints. Each endpoint requires its own SSL certificate. Certificates for both endpoints must include an X.500 distinguished name. Many certificate authorities recommend including an X.509 Subject Alternative Name extension in certificates they grant. vCloud Director does not require certificates to include a Subject Alternative Name.

Procedure

1. List the IP addresses for this server.
 Use a command like `ifconfig` to discover this server’s IP addresses.

2. For each IP address, run the following command to retrieve the fully qualified domain name to which the IP address is bound.
 `nslookup ip-address`

3. Make a note of each IP address, the fully qualified domain name associated with it, and whether vCloud Director should use the address for the HTTP service or the console proxy service.
 You need the fully qualified domain names when you create the certificates, and the IP addresses when you configure network and database connections. If the IP address can be reached by other fully qualified domain names, make a note of those too, since you will need to supply them if you want the certificate to include a Subject Alternative Name.

4. Create the certificates.
 You can use certificates signed by a trusted certification authority, or self-signed certificates.

 Note Signed certificates provide the highest level of trust.

Create and Import a Signed SSL Certificate

Signed certificates provide the highest level of trust for SSL communications.

Each vCloud Director server requires two SSL certificates, one for the HTTP service and one for the console proxy service, in a Java keystore file. You can use certificates signed by a trusted certification authority, or self-signed certificates. Signed certificates provide the highest level of trust.

Important These examples specify a 2,048-bit key size, but you should evaluate your installation’s security requirements before choosing an appropriate key size. Key sizes less than 1,024 bits are no longer supported per NIST Special Publication 800-131A.

To create and import self-signed certificates, see “Create a Self-Signed SSL Certificate,” on page 21.

Prerequisites

- Generate a list of fully-qualified domain names and their associated IP addresses on this server.
- Choose an address to use for the HTTP service and an address to use for the console proxy service. See “Create SSL Certificates,” on page 18.
- Verify that you have access to a computer that has a Java version 7 runtime environment, so that you can use the `keytool` command to create the certificate. The vCloud Director installer places a copy of `keytool` in `/opt/vmware/vcloud-director/jre/bin/keytool`, but you can perform this procedure on any computer that has a Java version 7 runtime environment installed. Certificates created with a `keytool`
from any other source are not supported for use with vCloud Director. Creating and importing the certificates before you install and configure vCloud Director software simplifies the installation and configuration process. These command-line examples assume that keytool is in the user’s path. The keystore password is represented in these examples as passwd.

- Certificates for both endpoints must include an X.500 distinguished name. Many certificate authorities recommend including an X.509 Subject Alternative Name extension in certificates they grant. vCloud Director does not require certificates to include a Subject Alternative Name. Familiarize yourself with the keytool command, including its -dname and -ext options.

- Gather the information required for the argument to the keytool -dname option.

<table>
<thead>
<tr>
<th>X.500 Distinguished Name Subpart</th>
<th>keytool keyword</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>commonName</td>
<td>CN</td>
<td>The fully qualified domain name associated with the IP address of this endpoint.</td>
<td>CN=vcd1.example.com</td>
</tr>
<tr>
<td>organizationalUnit</td>
<td>OU</td>
<td>The name of an organizational unit, such as a department or division, within the organization with which this certificate is associated</td>
<td>OU=Engineering</td>
</tr>
<tr>
<td>organizationName</td>
<td>O</td>
<td>The name of the organization with which this certificate is associated</td>
<td>O=Example Corporation</td>
</tr>
<tr>
<td>localityName</td>
<td>L</td>
<td>The name of the city or town in which the organization is located.</td>
<td>L=Palo Alto</td>
</tr>
<tr>
<td>stateName</td>
<td>S</td>
<td>The name of the state or province in which the organization is located.</td>
<td>S=California</td>
</tr>
<tr>
<td>country</td>
<td>C</td>
<td>The name of the country in which the organization is located.</td>
<td>C=US</td>
</tr>
</tbody>
</table>

Procedure

1. Create an untrusted certificate for the HTTP service.

 This example command creates an untrusted certificate in a keystore file named certificates.ks. The keytool options have been placed on separate lines for clarity. The X.500 distinguished name information supplied in the argument to the -dname option uses the values shown in the Prerequisites. The DNS and IP values shown in the argument to the -ext option are typical. Be sure to include all the DNS names at which this endpoint can be reached, including the one you specified for the commonName (CN) value in the -dname option argument. You can also include IP addresses, as shown here.

   ```
   keytool
   -keystore certificates.ks
   -alias http
   -storepass passwd
   -keypass passwd
   -storetype JCEKS
   -genkeypair
   -keyalg RSA
   -keysize 2048
   ```
2 Create an untrusted certificate for the console proxy service.

This command adds an untrusted certificate to the keystore file created in Step 1. The keytool options have been placed on separate lines for clarity. The X.500 distinguished name information supplied in the argument to the \(-dname\) option uses the values shown in the Prerequisites. The DNS and IP values shown in the argument to the \(-ext\) option are typical. Be sure to include all the DNS names at which this endpoint can be reached, including the one you specified for the commonName (CN) value in the \(-dname\) option argument. You can also include IP addresses, as shown here.

\[
\text{keytool} \\
-keystore certificates.ks \\
-alias consoleproxy \\
-storepass passwd \\
-keypass passwd \\
-storetype JCEKS \\
-genkeypair \\
-keyalg RSA \\
-keysize 2048 \\
-validity 365 \\
-dname "CN=vcd2.example.com, OU=Engineering, O=Example Corp, L=Palo Alto S=California C=US" \\
-ext "san=dns:vcd2.example.com,dns:vcd2,ip:10.100.101.10"
\]

3 Create a certificate signing request for the HTTP service.

This command creates a certificate signing request in the file http.csr.

\[
\text{keytool} \text{ -keystore certificates.ks -storetype JCEKS -storepass passwd -certreq -alias http -file http.csr}
\]

4 Create a certificate signing request for the console proxy service.

This command creates a certificate signing request in the file consoleproxy.csr.

\[
\text{keytool} \text{ -keystore certificates.ks -storetype JCEKS -storepass passwd -certreq -alias consoleproxy -file consoleproxy.csr}
\]

5 Send the certificate signing requests to your Certification Authority.

If your certification authority requires you to specify a Web server type, use Jakarta Tomcat.
6 When you receive the signed certificates, import them into the keystore file.

 a Import the Certification Authority's root certificate into the keystore file.
 This command imports the root certificate from the root.cer file to the certificates.ks keystore file.

 keytool -storetype JCEKS -storepass passwd -keystore certificates.ks -import -alias root
 -file root.cer

 b (Optional) If you received intermediate certificates, import them into the keystore file.
 This command imports intermediate certificates from the intermediate.cer file to the certificates.ks keystore file.

 keytool -storetype JCEKS -storepass passwd -keystore certificates.ks -import -alias intermediate
 -file intermediate.cer

 c Import the certificate for the HTTP service.
 This command imports the certificate from the http.cer file to the certificates.ks keystore file.

 keytool -storetype JCEKS -storepass passwd -keystore certificates.ks -import -alias http
 -file http.cer

 d Import the certificate for the console proxy service.
 This command imports the certificate from the consoleproxy.cer file to the certificates.ks keystore file.

 keytool -storetype JCEKS -storepass passwd -keystore certificates.ks -import -alias consoleproxy
 -file consoleproxy.cer

7 To verify that all the certificates are imported, list the contents of the keystore file.

 keytool -storetype JCEKS -storepass passwd -keystore certificates.ks -list

8 Repeat this procedure on all vCloud Director servers in the server group.

What to do next
If you created the certificates.ks keystore file on a computer other than the server on which you generated the list of fully qualified domain names and their associated IP addresses, copy the keystore file to that server now. You will need the keystore path name when you run the configuration script. See “Configure Network and Database Connections,” on page 30.

Create a Self-Signed SSL Certificate
Self-signed certificates can provide a convenient way to configure SSL for vCloud Director in environments where trust concerns are minimal.

Each vCloud Director server requires two SSL certificates, one for the HTTP service and one for the console proxy service, in a Java keystore file. You can use certificates signed by a trusted certification authority, or self-signed certificates. Signed certificates provide the highest level of trust.

IMPORTANT These examples specify a 2,048-bit key size, but you should evaluate your installation's security requirements before choosing an appropriate key size. Key sizes less than 1,024 bits are no longer supported per NIST Special Publication 800-131A.

To create and import signed certificates, see “Create and Import a Signed SSL Certificate,” on page 18.

Prerequisites
- Generate a list of fully-qualified domain names and their associated IP addresses on this server.
Choose an address to use for the HTTP service and an address to use for the console proxy service. See “Create SSL Certificates,” on page 18.

Verify that you have access to a computer that has a Java version 7 runtime environment, so that you can use the keytool command to create the certificate. The vCloud Director installer places a copy of keytool in /opt/vmware/vcloud-director/jre/bin/keytool, but you can perform this procedure on any computer that has a Java version 7 runtime environment installed. Certificates created with a keytool from any other source are not supported for use with vCloud Director. Creating and importing the certificates before you install and configure vCloud Director software simplifies the installation and configuration process. These command-line examples assume that keytool is in the user’s path. The keystore password is represented in these examples as password.

Certificates for both endpoints must include an X.500 distinguished name. Many certificate authorities recommend including an X.509 Subject Alternative Name extension in certificates they grant. vCloud Director does not require certificates to include a Subject Alternative Name. Familiarize yourself with the keytool command, including its –dname and –ext options.

Gather the information required for the argument to the keytool –dname option.

<table>
<thead>
<tr>
<th>X.500 Distinguished Name Subpart</th>
<th>keytool keyword</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>commonName</td>
<td>CN</td>
<td>The fully qualified domain name associated with the IP address of this endpoint.</td>
<td>CN=vcd1.example.com</td>
</tr>
<tr>
<td>organizationalUnit</td>
<td>OU</td>
<td>The name of an organizational unit, such as a department or division, within the organization with which this certificate is associated</td>
<td>OU=Engineering</td>
</tr>
<tr>
<td>organizationName</td>
<td>O</td>
<td>The name of the organization with which this certificate is associated</td>
<td>O=Example Corporation</td>
</tr>
<tr>
<td>localityName</td>
<td>L</td>
<td>The name of the city or town in which the organization is located.</td>
<td>L=Palo Alto</td>
</tr>
<tr>
<td>stateName</td>
<td>S</td>
<td>The name of the state or province in which the organization is located.</td>
<td>S=California</td>
</tr>
<tr>
<td>country</td>
<td>C</td>
<td>The name of the country in which the organization is located.</td>
<td>C=US</td>
</tr>
</tbody>
</table>

Procedure

1. Create an untrusted certificate for the HTTP service.

This example command creates an untrusted certificate in a keystore file named certificates.ks. The keytool options have been placed on separate lines for clarity. The X.500 distinguished name information supplied in the argument to the –dname option uses the values shown in the Prerequisites. The DNS and IP values shown in the argument to the –ext option are typical. Be sure to include all the DNS names at which this endpoint can be reached, including the one you specified for the commonName (CN) value in the –dname option argument. You can also include IP addresses, as shown here.

```bash
keytool
   -keystore certificates.ks
   -alias http
   -storepass passwd
   -keypass passwd
   -storetype JCEKS
```
2 Create an untrusted certificate for the console proxy service.

This command adds an untrusted certificate to the keystore file created in Step 1. The keytool options have been placed on separate lines for clarity. The X.500 distinguished name information supplied in the argument to the -dname option uses the values shown in the Prerequisites. The DNS and IP values shown in the argument to the -ext option are typical. Be sure to include all the DNS names at which this endpoint can be reached, including the one you specified for the commonName (CN) value in the -dname option argument. You can also include IP addresses, as shown here.

```
keytool
   -keystore certificates.ks
   -alias consoleproxy
   -storepass passwd
   -keypass passwd
   -storetype JCEKS
   -genkeypair
   -keyalg RSA
   -keysize 2048
   -validity 365
   -dname "CN=vcd2.example.com, OU=Engineering, O=Example Corp, L=Palo Alto S=California C=US"
   -ext "san=dns:vcd2.example.com,dns:vcd2,ip:10.100.101.10"
```

3 To verify that all the certificates are imported, list the contents of the keystore file.

```
keytool -storetype JCEKS -storepass passwd -keystore certificates.ks -list
```

4 Repeat this procedure on all vCloud Director servers in the server group.

What to do next

If you created the certificates.ks keystore file on a computer other than the server on which you generated the list of fully qualified domain names and their associated IP addresses, copy the keystore file to that server now. You will need the keystore path name when you run the configuration script. See “Configure Network and Database Connections,” on page 30.
Install and Configure vShield Manager for a New vCloud Director Installation

vCloud Director depends on having either vShield Manager or NSX Manager to provide network services to the cloud. Before you perform a new installation of vCloud Director, you must install and configure either vShield Manager or NSX Manager and associate a unique instance of vShield Manager or NSX Manager with each vCenter Server that you plan to include in your vCloud Director installation.

vShield Manager is included in the VMware vCloud Networking and Security download. Current information about supported versions of vShield Manager that are compatible with vCloud Director is available from the VMware Product Interoperability Matrixes located in VMware Partner Central. Log in to VMware Partner Central using your VMware Partner account information. For information about the network requirements, see “vCloud Director Hardware and Software Requirements,” on page 9.

IMPORTANT This procedure applies only when you are performing a new installation of vCloud Director. If you are upgrading an existing installation of vCloud Director, see Chapter 3, “Upgrading vCloud Director,” on page 39.

Prerequisites

- Verify that each of your vCenter Server systems meets the prerequisites for installing vShield Manager.
- Perform the installation task for the vShield Manager virtual appliance described in the vShield Installation and Upgrade Guide.

Procedure

1. Log in to the vShield Manager virtual appliance that you installed and confirm the settings that you specified during installation.
2. Associate the vShield Manager virtual appliance that you installed with the vCenter Server system that you plan to add to vCloud Director in your planned vCloud Director installation.

What to do next

Configure VXLAN support in the associated vShield Manager. vCloud Director creates VXLAN network pools to provide network resources to Provider VDCs. If VXLAN support is not configured in the associated vShield Manager, Provider VDCs show a network pool error, and you must create a different type of network pool and associate it with the Provider VDC. For details about how to configure VXLAN support, see the vShield Administration Guide.

Install and Configure NSX Manager for a New vCloud Director Installation

vCloud Director depends on having either vShield Manager or NSX Manager to provide network services to the cloud. Before you perform a new installation of vCloud Director, you must install and configure either vShield Manager or NSX Manager and associate a unique instance of vShield Manager or NSX Manager with each vCenter Server that you plan to include in your vCloud Director installation.

NSX is included in the VMware NSX for vSphere download. Current information about supported versions of NSX Manager that are compatible with vCloud Director is available from the VMware Product Interoperability Matrixes located in VMware Partner Central. Log in to VMware Partner Central using your VMware Partner account information. For information about the network requirements, see “vCloud Director Hardware and Software Requirements,” on page 9.

IMPORTANT This procedure applies only when you are performing a new installation of vCloud Director. If you are upgrading an existing installation of vCloud Director, see Chapter 3, “Upgrading vCloud Director,” on page 39.
Prerequisites

- Verify that each of your vCenter Server systems meets the prerequisites for installing NSX Manager.
- Perform the installation task for the NSX Manager virtual appliance described in the *NSX Installation and Upgrade Guide*.

Procedure

1. Log in to the NSX Manager virtual appliance that you installed and confirm the settings that you specified during installation.

2. Associate the NSX Manager virtual appliance that you installed with the vCenter Server system that you plan to add to vCloud Director in your planned vCloud Director installation.

What to do next

Configure VXLAN support in the associated NSX Manager. vCloud Director creates VXLAN network pools to provide network resources to Provider VDCs. If VXLAN support is not configured in the associated NSX Manager, Provider VDCs show a network pool error, and you must create a different type of network pool and associate it with the Provider VDC. For details about configuring VXLAN support, see the *NSX Administration Guide*.

Installing and Configuring an AMQP Broker

AMQP, the Advanced Message Queuing Protocol, is an open standard for message queuing that supports flexible messaging for enterprise systems. vCloud Director includes an AMQP service that you can configure to work with an AMQP broker, such as RabbitMQ, to provide cloud operators with a stream of notifications about events in the cloud. If you want to use this service, you must install and configure an AMQP broker.

While use of an AMQP broker with vCloud Director is optional, a number of integrations use AMQP to communicate with vCloud Director. Consult the installation and configuration documents for any integrations you plan to use.

Procedure

1. Download the RabbitMQ Server from http://info.vmware.com/content/12834_rabbitmq.
2. Follow the RabbitMQ installation instructions to install RabbitMQ on any convenient host.
 - The RabbitMQ server host must be reachable on the network by each vCloud Director cell.
3. During the RabbitMQ installation, make a note of the values that you will need to supply when configuring vCloud Director to work with this RabbitMQ installation.
 - The fully-qualified domain name of the RabbitMQ server host, for example *amqp.example.com*.
 - A username and password that are valid for authenticating with RabbitMQ.
 - The port at which the broker listens for messages. The default is 5672.
 - The RabbitMQ virtual host. The default is "/".

What to do next

By default, the vCloud Director AMQP service sends unencrypted messages. If you configure it to encrypt these messages using SSL, it verifies the broker's certificate by using the default JCEKS trust store of the Java runtime environment on the vCloud Director server. The Java runtime environment is typically located in the $JRE_HOME/lib/security/cacerts directory.

To use SSL with the vCloud Director AMQP service, select **Use SSL** on the AMQP Broker Settings section of the Extensibility page of the vCloud Director Web console, and provide either of the following:

- an SSL certificate pathname
a JCEKS trust store pathname and password

If you do not need to validate the AMQP broker's certificate, you can select Accept all certificates.

Download and Install the VMware Public Key

The installation file is digitally signed. To verify the signature, you must download and install the VMware public key.

You can use the Linux `rpm` tool and the VMware public key to verify the digital signature of the vCloud Director installation file, or any other signed downloaded file from vmware.com. If you install the public key on the computer where you plan to install vCloud Director, the verification happens as part of the installation or upgrade. You can also manually verify the signature before you begin the installation or upgrade procedure, then use the verified file for all installations or upgrades.

NOTE The download site also publishes a checksum value for the download. The checksum is published in two common forms. Verifying the checksum verifies that the file contents that you downloaded are the same as the contents that were posted. It does not verify the digital signature.

Procedure

1. Create a directory to store the VMware Packaging Public Keys.
2. Use a Web browser to download all of the VMware Public Packaging Public Keys from the http://packages.vmware.com/tools/keys directory.
3. Save the key files to the directory that you created.
4. For each key that you download, run the following command to import the key.

   ```bash
   # rpm --import /key_path/key_name
   
   key_path is the directory in which you saved the keys.
   key_name is the filename of a key.
   ```
A vCloud Director server group consists of one or more vCloud Director servers that share a common database and other configuration details. To create a server group, you install and configure vCloud Director software on the first member of the group. Installation and configuration of the first group member creates a response file that you use to configure additional members of the group.

Prerequisites for Creating a vCloud Director Server Group

IMPORTANT This procedure is for new installations only. If you are upgrading an existing vCloud Director installation, see Chapter 3, “Upgrading vCloud Director,” on page 39

Before you begin installing and configuring vCloud Director, complete all of the following tasks.

1. Verify that a supported vCenter Server system is running and properly configured for use with vCloud Director. For supported versions and configuration requirements, see “Supported Platforms,” on page 9.

2. Verify that a supported vShield Manager or NSX Manager is running, associated with the vCenter Server system, and properly configured for use with vCloud Director. For supported versions, see “Supported Platforms,” on page 9. For installation and configuration details, see “Install and Configure vShield Manager for a New vCloud Director Installation,” on page 24 and “Install and Configure NSX Manager for a New vCloud Director Installation,” on page 24.

3. Verify that you have at least one server platform that is supported for running the vCloud Director software and that server platform is configured with an appropriate amount of memory and storage. For supported platforms and configuration requirements, see “Supported vCloud Director Server Operating Systems,” on page 10.

 - Each member of a server group requires two IP addresses: one to support an SSL connection for the HTTP service and another for the console proxy service.

 - Each server must have an SSL certificate for each IP address. All directories in the pathname to the SSL certificates must be readable by any user. See “Create SSL Certificates,” on page 18.

 - For the transfer service, each server must mount an NFS or other shared storage volume at `/opt/vmware/vcloud-director/data/transfer`. This volume must be accessible to all members of the server group. See “Summary of Network Configuration Requirements for vCloud Director,” on page 13.

 - Each server should have access to a Microsoft Sysprep deployment package. See “Install Microsoft Sysprep Files on the Servers,” on page 35.
Verify that you have created a vCloud Director database and that it is accessible to all servers in the group. For a list of supported database software, see “Supported vCloud Director Databases,” on page 10.

- Verify that you have created a database account for the vCloud Director database user and that the account has all required database privileges. See “Installing and Configuring a vCloud Director Database,” on page 15.

- Verify that the database service starts when the database server is rebooted.

Verify that all vCloud Director servers, the database server, all vCenter Server systems, and those vCenter Server systems’ associated vShield Manager or NSX Manager components can resolve each other's names as described in “Summary of Network Configuration Requirements for vCloud Director,” on page 13.

Verify that the database service starts when the database server is rebooted.

Verify that all vCloud Director servers and the database server are synchronized to a network time server with the tolerances noted in “Summary of Network Configuration Requirements for vCloud Director,” on page 13.

If you plan to import users or groups from an LDAP service, verify that the service is accessible to each vCloud Director server.

Open firewall ports as shown in “Network Security Recommendations,” on page 14. Port 443 must be open between vCloud Director and vCenter Server systems.

This chapter includes the following topics:

- “Install and Configure vCloud Director Software on the First Member of a Server Group,” on page 28
- “Configure Network and Database Connections,” on page 30
- “Install vCloud Director Software on Additional Members of a Server Group,” on page 34
- “Install Microsoft Sysprep Files on the Servers,” on page 35
- “Start or Stop vCloud Director Services,” on page 36
- “Uninstall vCloud Director Software,” on page 37

Install and Configure vCloud Director Software on the First Member of a Server Group

All members of a vCloud Director share database connection and other configuration details that you specify when installing and configuring the first member of the group. These details are captured in a response file that you must use when adding members to the group.

vCloud Director software is distributed as a digitally signed Linux executable file named vmware-vcloud-director-8.0.0-<nnnnnn>.bin, where <nnnnnn> represents a build number.

The vCloud Director installer verifies that the target server meets all platform prerequisites and installs vCloud Director software on it. After the software is installed on the target server, you must run a script that configures the server’s network and database connections. This script creates a response file that you must use when configuring additional members of this server group.

Prerequisites

- Verify that the target server and the network it connects to meet the requirements specified in “Summary of Network Configuration Requirements for vCloud Director,” on page 13.

- Verify that you have superuser credentials for the target server.

- Verify that the target server mounts the shared transfer service storage volume at /opt/vmware/vcloud-director/data/transfer.
To have the installer verify the digital signature of the installation file, download and install the VMware public key on the target server. If you already verified the digital signature of the installation file, you do not need to verify it again during installation. See “Download and Install the VMware Public Key,” on page 26.

Procedure

1. Log in to the target server as root.

2. Download the installation file to the target server.
 If you purchased the software on a CD or other media, copy the installation file to a location that is accessible to all target servers.

3. Verify that the checksum of the download matches the one posted on the download page.
 Values for MD5 and SHA1 checksums are posted on the download page. Use the appropriate tool to verify that the checksum of the downloaded installation file matches the one shown on the download page. A Linux command of the following form displays the checksum for installation-file.
   ```
   [root@cell1 /tmp]# md5sum installation-file
   checksum-value installation-file
   ```
 Compare the checksum-value produced by this command with the MD5 checksum copied from the download page.

4. Ensure that the installation file is executable. The installation file requires execute permission. To be sure that it has this permission, open a console, shell, or terminal window and run the following Linux command, where installation-file is the full pathname to the vCloud Director installation file.
   ```
   [root@cell1 /tmp]# chmod u+x installation-file
   ```

5. In a console, shell, or terminal window, run the installation file.
 To run the installation file, type its full pathname, for example:
   ```
   [root@cell1 /tmp]# ./installation-file
   ```
 The file includes an installation script and an embedded RPM package.

 Note: You cannot run the installation file from a directory whose pathname includes any embedded space characters.

 The installer prints a warning of the following form if you have not installed the VMware public key on the target server.
   ```
   warning:installation-file.rpm: Header V3 RSA/SHA1 signature: NOKEY, key ID 66fd4949
   ```
 When the installer runs, it takes these actions.
 a. Verifies that the host meets all requirements
 b. Verifies the digital signature on the installation file
 c. Creates the vcloud user and group
 d. Unpacks the vCloud Director RPM package
 e. Installs the software

 After the software is installed, the installer prompts you to run the configuration script, which configures the server’s network and database connections.
What to do next

Decide whether to run the configuration script.

- If you have completed the prerequisites listed in “Prerequisites for Creating a vCloud Director Server Group,” on page 27, you can run the configuration script now. Type `y` and press Enter.

- If you are not ready to run the configuration script now, type `n` and press Enter to exit to the shell.

For more information about running the configuration script, see “Configure Network and Database Connections,” on page 30.

Configure Network and Database Connections

After vCloud Director software is installed on the server, the installer prompts you to run a script that configures the server’s network and database connections.

You must install vCloud Director software on the server before you can run the configuration script. The installer prompts you to run the script after installation is complete, but you can choose to run it later.

To run the script after the vCloud Director software is installed, log in as root, open a console, shell, or terminal window, and type:

```
/opt/vmware/vcloud-director/bin/configure
```

The configuration script creates network and database connections for a single vCloud Director server. The script also creates a response file that preserves database connection information for use in subsequent server installations.

Note After you run the configuration script to configure the first member of the server group, you must use the `-r` option and specify the response file pathname when configuring additional members of the group. See “Protecting and Reusing the Response File,” on page 33.

Prerequisites

- Verify that a database of a supported type is accessible from the vCloud Director server. See “Installing and Configuring a vCloud Director Database,” on page 15 and “vCloud Director Hardware and Software Requirements,” on page 9.

- Have the following information available:
 - Location and password of the keystore file that includes the SSL certificates for this server. See “Create and Import a Signed SSL Certificate,” on page 18. The configuration script does not run with a privileged identity, so the keystore file and the directory in which it is stored must be readable by any user.
 - Password for each SSL certificate.
 - Hostname or IP address of the database server.
 - Database name and connection port.
 - Database user credentials (user name and password). This user must have specific database privileges. See “Installing and Configuring a vCloud Director Database,” on page 15.
Procedure

1 Specify the IP addresses to use for the HTTP and console proxy services running on this host.

Each member of a server group requires two IP addresses, so that it can support two different SSL connections: one for the HTTP service and another for the console proxy service. To begin the configuration process, choose which of the IP addresses discovered by the script should be used for each service.

Please indicate which IP address available on this machine should be used for the HTTP service and which IP address should be used for the remote console proxy.

The HTTP service IP address is used for accessing the user interface and the REST API. The remote console proxy IP address is used for all remote console (VMRC) connections and traffic.

Please enter your choice for the HTTP service IP address:

1: 10.17.118.158
2: 10.17.118.159

Choice [default=1]: 2

Please enter your choice for the remote console proxy IP address:

1: 10.17.118.158

Choice [default=1]:

2 Specify the full path to the Java keystore file.

Please enter the path to the Java keystore containing your SSL certificates and private keys:

/opt/keystore/certificates.ks

3 Type the keystore and certificate passwords.

Please enter the password for the keystore:

Please enter the private key password for the 'http' SSL certificate:

Please enter the private key password for the 'consoleproxy' SSL certificate:

4 Configure audit message handling options.

Services in each vCloud Director cell log audit messages to the vCloud Director database, where they are preserved for 90 days. To preserve audit messages longer, you can configure vCloud Director services to send audit messages to the syslog utility in addition to the vCloud Director database.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>To log audit messages to both syslog and the vCloud Director database.</td>
<td>Type the syslog hostname or IP address.</td>
</tr>
<tr>
<td>To log audit messages only to the vCloud Director database</td>
<td>Press Enter.</td>
</tr>
</tbody>
</table>

If you would like to enable remote audit logging to a syslog host please enter the hostname or IP address of the syslog server. Audit logs are stored by vCloud Director for 90 days. Exporting logs via syslog will enable you to preserve them for as long as necessary.

Syslog host name or IP address [press Enter to skip]: 10.150.10.10

5 Specify the port on which the syslog process monitors the specified server.

The default is port 514.

What UDP port is the remote syslog server listening on? The standard syslog port is 514. [default=514]:

Using default value "514" for syslog port.
Specify the database type, or press Enter to accept the default value.

The following database types are supported:
1. Oracle
2. Microsoft SQL Server
Enter the database type [default=1]:
Using default value "1" for database type.

Specify database connection information.

The information that the script requires depends on your choice of database type. This example shows the prompts that follow specification of an Oracle database. Prompts for other database types are similar.

a Type the hostname or IP address of the database server.

Enter the host (or IP address) for the database: **10.150.10.78**

b Type the database port, or press Enter to accept the default value.

Enter the database port [default=1521]:
Using default value "1521" for port.

c Type the database service name.

Enter the database service name [default=oracle]: **orcl.example.com**

If you press Enter, the configuration script uses a default value, which might not be correct for some installations. For information about how to find the database service name for an Oracle database, see “Configure an Oracle Database,” on page 15.

d Type the database user name and password.

Enter the database username: **vcloud**
Enter the database password:

The script validates the information you supplied, then continues with three more steps.

1. It initializes the database and connects this server to it.

2. It offers to start vCloud Director services on this host.

3. It displays a URL at which you can connect to the Setup wizard after vCloud Director service starts.

This fragment shows a typical completion of the script.

Connecting to the database: jdbc:oracle:thin:vcloud/vcloud@10.150.10.78:1521/vcloud

...........

Database configuration complete.

Once the vCloud Director server has been started you will be able to access the first-time setup wizard at this URL:

http://vcloud.example.com

Would you like to start the vCloud Director service now? If you choose not to start it now, you can manually start it at any time using this command:

```
  service vmware-vcd start
```

Start it now? [y/n]: **y**

Starting the vCloud Director service (this may take a moment).

The service was started; it may be several minutes before it is ready for use. Please check the logs for complete details.

vCloud Director configuration is now complete. Exiting...
What to do next

Database connection information and other reusable responses you supplied during configuration are preserved in a file located at /opt/vmware/vcloud-director/etc/responses.properties on this server. This file contains sensitive information that you must reuse when you add more servers to a server group. Preserve the file in a secure location, and make it available only when needed.

To add more servers to this group, see “Install vCloud Director Software on Additional Members of a Server Group,” on page 34.

After vCloud Director services are running on all servers, you can open the Setup wizard at the URL displayed when the script completes. See Chapter 4, “vCloud Director Setup,” on page 51.

Protecting and Reusing the Response File

Network and database connection details that you supply when you configure the first vCloud Director server are saved in a response file. This file contains sensitive information that you must reuse when you add more servers to a server group. Preserve the file in a secure location, and make it available only when needed.

The response file is created at /opt/vmware/vcloud-director/etc/responses.properties on the first server for which you configure network and database connections. When you add more servers to the group, you must use a copy of the response file to supply configuration parameters that all servers share.

Procedure

1. Protect the response file.

 Save a copy of the file in a secure location. Restrict access to it, and make sure it is backed up to a secure location. When you back up the file, avoid sending cleartext across a public network.

2. Reuse the response file.

 a. Copy the file to a location accessible to the server you are ready to configure.


   ```
   [root@cell1 /tmp]# ls -l responses.properties
   -rw------- 1 vcloud vcloud 418 Jun 8 13:42 responses.properties
   ```

 The installer creates this user and group.

 b. Run the configuration script, using the \(-r\) option and specifying the response file pathname.

   ```
   [root@cell1 /tmp]# /opt/vmware/vcloud-director/bin/configure -r /path-to-response-file
   ```

What to do next

After you configure the additional servers, delete the copy of the response file you used to configure them.
Install vCloud Director Software on Additional Members of a Server Group

You can add servers to a vCloud Director server group at any time. Because all servers in a server group must be configured with the same database connection details, you must use the response file created when you configured the first member of the group to supply this information when you configure additional members.

Prerequisites

- Verify that you can access the response file that was created when you installed and configured the first member of this server group. See “Protecting and Reusing the Response File,” on page 33.
- Verify that the vCloud Director database is accessible from this server.
- Verify that the SSL certificates that you created for this server are installed in a location that the installer can access. See “Create and Import a Signed SSL Certificate,” on page 18. The configuration script does not run with a privileged identity, so the keystore file and the path in which it is stored must be readable by any user. Using the same keystore path (for example, /tmp/certificates.ks) on all members of a server group simplifies the installation process.
- Have the following information available:
 - The password of the keystore file that includes the SSL certificates for this server.
 - Password for each SSL certificate.

Procedure

1. Log in to the target server as root.

2. Download the installation file to the target server.

 If you purchased the software on a CD or other media, copy the installation file to a location that is accessible to all target servers.

3. Ensure that the installation file is executable.

 The installation file requires execute permission. To be sure that it has this permission, open a console, shell, or terminal window and run the following Linux command, where installation-file is the full pathname to the vCloud Director installation file.

   ```
   [root@cell1 /tmp]# chmod u+x installation-file
   ```

4. Copy the response file to a location accessible to this server.

 All directories in the pathname to the response file must be readable by root.

5. In a console, shell, or terminal window, run the installation file using the -r option and specifying the response file pathname.

 To run the installation file, type its full pathname, for example:

   ```
   [root@cell1 /tmp]# ./installation-file -r /path-to-response-file
   ```

 The file includes an installation script and an embedded RPM package.

 Note You cannot run the installation file from a directory whose pathname includes any embedded space characters.

 The installer prints a warning of the following form if you have not installed the VMware public key on the target server.

 warning: installation-file.rpm: Header V3 RSA/SHA1 signature: NOKEY, key ID 66fd4949
When the installer runs with the `-r` option, it takes these actions.

- Verifies that the host meets all requirements
- Verifies the digital signature on the installation file
- Creates the `vcloud` user and group
- Unpacks the vCloud Director RPM package
- Installs the software
- Copies the response file to a location readable by `vcloud.vcloud`
- Runs the configuration script using the response file as input

When the configuration script runs, it looks for the certificates in the path saved in the response file (for example, `/tmp/certificates.ks`), then prompts you to supply the keystore and certificate passwords. If the configuration script does not find valid certificates in the pathname saved in the response file, it prompts you for a pathname to the certificates.

6. (Optional) Repeat this procedure to add more servers to this server group.

What to do next

If your cloud needs to support guest customization for certain older Microsoft operating systems, install Sysprep files on all members of the server group. See “Install Microsoft Sysprep Files on the Servers,” on page 35.

After the configuration script finishes and vCloud Director services are running on all servers, you can open the Setup wizard at the URL that appears when the script completes. See Chapter 4, “vCloud Director Setup,” on page 51.

Install Microsoft Sysprep Files on the Servers

Before vCloud Director can perform guest customization on virtual machines with certain older Windows guest operating systems, you must install the appropriate Microsoft Sysprep files on each member of the server group.

Sysprep files are required only for some older Microsoft operating systems. If your cloud does not need to support guest customization for those operating systems, you do not need to install Sysprep files.

To install the Sysprep binary files, you copy them to a specific location on the server. You must copy the files to each member of the server group.

Prerequisites

Verify that you have access to the 32- and 64-bit Sysprep binary files for Windows 2003 and Windows XP.

Procedure

1. Log in to the target server as root.
2. Change directory to `$VCLOUD_HOME/guestcustomization/default/windows`.

   ```bash
   [root@cell1 /]# cd /opt/vmware/vcloud-director/guestcustomization/default/windows
   ```

3. Create a directory named `sysprep`.

   ```bash
   [root@cell1 /opt/vmware/vcloud-director/guestcustomization/default/windows]# mkdir sysprep
   ```

4. For each guest operating system that requires Sysprep binary files, create a subdirectory of `$VCLOUD_HOME/guestcustomization/default/windows/sysprep`.

 Subdirectory names are specific to a guest operating system.
Table 2-1. Subdirectory Assignments for Sysprep Files

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>Subdirectory to Create Under</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 2003 (32-bit)</td>
<td>svr2003</td>
</tr>
<tr>
<td>Windows 2003 (64-bit)</td>
<td>svr2003-64</td>
</tr>
<tr>
<td>Windows XP (32-bit)</td>
<td>xp</td>
</tr>
<tr>
<td>Windows XP (64-bit)</td>
<td>xp-64</td>
</tr>
</tbody>
</table>

For example, to create a subdirectory to hold Sysprep binary files for Windows XP, use the following Linux command.

```
[root@cell1 /opt/vmware/vcloud-director/guestcustomization/default/windows]# mkdir sysprep/xp
```

5 Copy the Sysprep binary files to the appropriate location on each vCloud Director server in the server group.

6 Ensure that the Sysprep files are readable by the user vcloud.vcloud.

 Use the Linux chown command to do this.

```
[root@cell1 /]# chown -R vcloud:vcloud $VCLOUD_HOME/guestcustomization
```

When the Sysprep files are copied to all members of the server group, you can perform guest customization on virtual machines in your cloud. You do not need to restart vCloud Director after the Sysprep files are copied.

Start or Stop vCloud Director Services

After you complete installation and database connection setup on a server, you can start vCloud Director services on it. You can also stop these services if they are running.

The configuration script prompts you to start vCloud Director services. You can let the script start these services for you, or you can start the services yourself later. These services must be running before you can complete and initialize the installation.

vCloud Director services start whenever you reboot a server.

IMPORTANT If you are stopping vCloud Director services as part of a vCloud Director software upgrade, you must use the cell management tool, which allows you to quiesce the cell before stopping services. See “Use the Cell Management Tool to Quiesce and Shut Down a Server,” on page 41.

Procedure

1 Log in to the target server as root.

2 Start or stop services.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start services</td>
<td>Open a console, shell, or terminal window and run the following command. service vmware-vcd start</td>
</tr>
<tr>
<td>Stop services when the cell is in use</td>
<td>Use the cell management tool.</td>
</tr>
<tr>
<td>Stop services when the cell is not in use</td>
<td>Open a console, shell, or terminal window and run the following command. service vmware-vcd stop</td>
</tr>
</tbody>
</table>
Uninstall vCloud Director Software

Use the Linux `rpm` command to uninstall vCloud Director software from an individual server.

Procedure

1. Log in to the target server as root.
2. Unmount the transfer service storage, typically mounted at `/opt/vmware/vcloud-director/data/transfer`.
3. Open a console, shell, or terminal window and run the `rpm` command.

 `rpm -e vmware-vcloud-director`
To upgrade vCloud Director to a new version, install the new version on each server in the vCloud Director server group, upgrade the vCloud Director database, and restart vCloud Director services.

IMPORTANT This upgrade procedure assumes that you are upgrading a vCloud Director installation that uses VMware vSphere and networking components (VMware NSX for vSphere or VMware vCloud Networking and Security) that are also compatible with vCloud Director 8.0. Before you begin this procedure, refer to the VMware Product Interoperability Matrixes at http://partnerweb.vmware.com/comp_guide/sim/interop_matrix.php for information about the versions of other VMware products that are compatible with the version of vCloud Director that you are currently running and also with vCloud Director 8.0. It might be necessary to upgrade some of those components in your current vCloud Director installation to versions that are also compatible with vCloud Director 8.0.

After you upgrade a vCloud Director server, you must also upgrade its vCloud Director database. The database stores information about the runtime state of the server, including the state of all vCloud Director tasks it is running. To ensure that no invalid task information remains in the database after an upgrade, you must ensure that no tasks are active on the server before you begin the upgrade.

The upgrade also preserves the following artifacts, which are not stored in the vCloud Director database:

- Local and global properties files are copied to the new installation.
- Microsoft sysprep files used for guest customization are copied to the new installation.

Unless you use a load balancer to distribute client requests across members of your vCloud Director server group (see “Using a Load Balancer to Reduce Service Downtime,” on page 40), the upgrade requires sufficient vCloud Director downtime to upgrade the database and at least one server.

Upgrading a vCloud Director Server Group

1. Disable user access to vCloud Director. You can also display a maintenance message while the upgrade is underway. See “Displaying the Maintenance Message During an Upgrade,” on page 41.

2. Use the cell management tool to quiesce all cells in the server group and shut down vCloud Director services on each server. See “Use the Cell Management Tool to Quiesce and Shut Down a Server,” on page 41.

3. Upgrade vCloud Director software on all members of the server group. See “Upgrade vCloud Director Software on Any Member of a Server Group,” on page 42. You can upgrade the servers individually or in parallel, but you must not restart vCloud Director services on any upgraded member of the group before you upgrade the vCloud Director database.

4. Upgrade the vCloud Director database. See “Upgrade the vCloud Director Database,” on page 44.

5. Restart vCloud Director on the upgraded servers. See “Start or Stop vCloud Director Services,” on page 36.
6 Enable user access to vCloud Director.

7 (Optional) Upgrade each associated vShield Manager or NSX Manager. All vShield Manager or NSX Manager installations registered to this server group must be upgraded to a version of vShield Manager or NSX Manager software that is compatible with the version of vCloud Director installed by the upgrade. If the upgrade program detects an incompatible version of vShield Manager or NSX Manager, upgrading is not allowed. You must upgrade to the latest version of vShield Manager or NSX Manager as described in “Supported Platforms,” on page 9 to use networking features introduced in this version of vCloud Director. See “Upgrade the Existing vShield Manager or NSX Manager That Is Associated with an Attached vCenter Server System,” on page 47.

8 (Optional) Upgrade each associated vCenter Server system and hosts. See “Upgrade vCenter Server Systems, Hosts, and vShield Edge Appliances,” on page 48. All vCenter Server systems registered to this server group must be upgraded to a version of vCenter Server software that is compatible with the version of vCloud Director installed by the upgrade. Incompatible vCenter Server systems become inaccessible from vCloud Director after the upgrade is complete. See “Supported Platforms,” on page 9.

NOTE After completing the upgrade, if you have the vCloud Director Web Console open in a browser, log out and clear your browser cache before logging back in to the Web Console.

Using a Load Balancer to Reduce Service Downtime

If you are using a load balancer or other tool that can force requests to go to specific servers, you can upgrade a subset of the server group while keeping existing services available on the remaining subset. This approach reduces vCloud Director service downtime to the length of time required to upgrade the vCloud Director database. Users might experience some degradation of performance during the upgrade, but in-progress tasks continue to run as long as any subset of the server group is operational. Console sessions might be interrupted, but you can restart them.

1 Use the load balancer to redirect vCloud Director requests to a subset of the servers in the group. Follow the procedures recommended by your load balancer.

2 Use the cell management tool to quiesce the cells that are no longer handling requests and shut down vCloud Director services on those servers.

NOTE Console sessions routed through a server’s console proxy are interrupted when the server shuts down. Clients can refresh the console window to recover.

3 Upgrade vCloud Director software on the members of the server group on which you have stopped vCloud Director, but do not restart those services. See “Upgrade vCloud Director Software on Any Member of a Server Group,” on page 42.

4 Use the cell management tool to quiesce the cells that you have not yet upgraded and shut down vCloud Director services on those servers.

5 Upgrade the vCloud Director database. See “Upgrade the vCloud Director Database,” on page 44.

6 Restart vCloud Director on the upgraded servers. See “Start or Stop vCloud Director Services,” on page 36.

7 (Optional) Upgrade each associated vShield Manager or NSX Manager. See “Upgrade the Existing vShield Manager or NSX Manager That Is Associated with an Attached vCenter Server System,” on page 47.

8 (Optional) Upgrade each associated vCenter Server system and hosts. See “Upgrade vCenter Server Systems, Hosts, and vShield Edge Appliances,” on page 48.

9 Use the load balancer to redirect vCloud Director requests to the upgraded servers.
Upgrade vCloud Director software on the remaining servers in the group, and restart vCloud Director on those servers as the upgrades complete. See “Upgrade vCloud Director Software on Any Member of a Server Group,” on page 42.

Displaying the Maintenance Message During an Upgrade

If you anticipate a lengthy upgrade process and want to have the system display a maintenance message while the upgrade is underway, verify that at least one cell remains accessible while the others are being upgraded. Run the /opt/vmware/vcloud-director/bin/vmware-vcd-cell command on that cell to turn on the cell maintenance message.

[root@cell1 /opt/vmware/vcloud-director/bin]# ./vmware-vcd-cell maintenance

When you are ready to return an upgraded cell to service, run the following command on the cell to turn off the maintenance message.

[root@cell1 /opt/vmware/vcloud-director/bin]# service vmware-vcd restart

This chapter includes the following topics:

- “Use the Cell Management Tool to Quiesce and Shut Down a Server,” on page 41
- “Upgrade vCloud Director Software on Any Member of a Server Group,” on page 42
- “Upgrade the vCloud Director Database,” on page 44
- “Upgrade the Existing vShield Manager or NSX Manager That Is Associated with an Attached vCenter Server System,” on page 47
- “Upgrade vCenter Server Systems, Hosts, and vShield Edge Appliances,” on page 48

Use the Cell Management Tool to Quiesce and Shut Down a Server

Before you upgrade a vCloud Director server, use the cell management tool to quiesce and shut down vCloud Director services on the server's cell.

vCloud Director creates a task object to track and manage each asynchronous operation that a user requests. Information about all running and recently completed tasks is stored in the vCloud Director database. Because a database upgrade invalidates this task information, you must be sure that no tasks are running when you begin the upgrade process.

With the cell management tool, you can suspend the task scheduler so that new tasks cannot be started, then check the status of all active tasks. You can wait for running tasks to finish or log in to vCloud Director as a system administrator and cancel them. See Chapter 5, “Cell Management Tool Reference,” on page 55. When no tasks are running, you can use the cell management tool to stop vCloud Director services.

Prerequisites

- Verify that you have superuser credentials for the target server.
- Verify that you have vCloud Director system administrator credentials.
- If this cell will be accessible to vCloud Director clients while it is being upgraded, use the /opt/vmware/vcloud-director/bin/vmware-vcd-cell command to turn on the cell maintenance message.

[root@cell1 /opt/vmware/vcloud-director/bin]# ./vmware-vcd-cell maintenance

This command causes the cell to respond to all requests with a maintenance message. If you use a load balancer or similar tool to make the cell inaccessible during the upgrade, you do not need to turn on the cell maintenance message.
Procedure

1. Log in to the target server as root.

2. Use the cell management tool to gracefully shut down the cell.

 a. Retrieve the current job status.

 The following `cell-management-tool` command supplies system administrator credentials and returns the count of running jobs.

      ```bash
      [root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool -u administrator cell --status
      Job count = 3
      Is Active = true
      ```

 b. Stop the task scheduler to quiesce the cell.

 Use a `cell-management-tool` command of the following form.

      ```bash
      [root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool -u administrator cell --quiesce true
      ```

 This command prevents new jobs from being started. Existing jobs continue to run until they finish or are cancelled. To cancel a job, use the vCloud Director Web Console or the REST API.

 c. When the Job count value is 0 and the Is Active value is false, it is safe to shut down the cell.

 Use a `cell-management-tool` command of the following form.

      ```bash
      [root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool -u administrator cell --shutdown
      ```

 NOTE You can supply the vCloud Director system administrator password on the `cell-management-tool` command line, but it is more secure to omit the password. This causes the `cell-management-tool` to prompt for the password, which it does not display on the screen as you type.

3. **Console sessions routed through a server’s console proxy are interrupted when the server shuts down. If other members of the server group are still active, clients can refresh the console window to recover.**

What to do next

After the cell management tool stops vCloud Director services on this server, you can upgrade the server’s vCloud Director software or complete other maintenance that the server requires.

Upgrade vCloud Director Software on Any Member of a Server Group

The vCloud Director installer verifies that the target server meets all upgrade prerequisites and upgrades the vCloud Director software on the server.

vCloud Director software is distributed as a Linux executable file named `vmware-vcloud-director-8.0.0-nnnnnn.bin`, where `nnnnnn` represents a build number. After the upgrade is installed on a member of a server group, you must run a tool that upgrades the vCloud Director database that the group uses before you can restart vCloud Director services on the upgraded server.

Prerequisites

- Verify that you have superuser credentials for the target server.
- To have the installer verify the digital signature of the installation file, download and install the VMware public key on the target server. If you already verified the digital signature of the installation file, you do not need to verify it again during installation. See “Download and Install the VMware Public Key,” on page 26.
Use the cell management tool to quiesce and shut down vCloud Director services on the server's cell.

Verify that you have a valid license key to use the version of the vCloud Director software to which you are upgrading.

Procedure

1. Log in to the target server as root.
2. Download the installation file to the target server.
 If you purchased the software on a CD or other media, copy the installation file to a location that is accessible to all target servers.
3. Verify that the checksum of the download matches the one posted on the download page.
 Values for MD5 and SHA1 checksums are posted on the download page. Use the appropriate tool to verify that the checksum of the downloaded installation file matches the one shown on the download page. A Linux command of the following form displays the checksum for installation-file.

   ```bash
   [root@cell1 /tmp]# md5sum installation-file
   checksum-value installation-file
   ```
 Compare the checksum-value produced by this command with the MD5 checksum copied from the download page.
4. Ensure that the installation file is executable.
 The installation file requires execute permission. To be sure that it has this permission, open a console, shell, or terminal window and run the following Linux command, where installation-file is the full pathname to the vCloud Director installation file.

   ```bash
   [root@cell1 /tmp]# chmod u+x installation-file
   ```
5. Use the cell management tool to quiesce the cell and shut down vCloud Director services on the server.
 See “Use the Cell Management Tool to Quiesce and Shut Down a Server,” on page 41.
6. In a console, shell, or terminal window, run the installation file.
 To run the installation file, type its full pathname, for example ./installation-file. The file includes an installation script and an embedded RPM package.

 NOTE You cannot run the installation file from a directory whose pathname includes any embedded space characters.

 If the installer detects a version of vCloud Director installed on this server that is equal to or later than the version in the installation file, it displays an error message and exits. Otherwise, it prompts you to confirm that you are ready to proceed to upgrade this server.

 Checking architecture...done
 Checking for a supported Linux distribution...done
 Checking for necessary RPM prerequisites...done
 Checking free disk space...done
 An older version of VMware vCloud Director has been detected

 7. Respond to the upgrade prompt.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue the upgrade.</td>
<td>Type y</td>
</tr>
<tr>
<td>Exit to the shell without making any changes in the current installation.</td>
<td>Type n</td>
</tr>
</tbody>
</table>
After you confirm that you are ready to upgrade the server, the installer verifies that the host meets all requirements, unpacks the vCloud Director RPM package, stops vCloud Director services on the server, and upgrades the installed vCloud Director software.

Do you wish to proceed with the upgrade? (y/n)? y

Extracting vmware-vcloud-directordone
Upgrading VMware vcloud Director...
Installing the VMware vcloud Director
Prepating... ##
vmware-vcloud-director ##
Migrating settings and files from previous release...done
Migrating in-progress file transfers to /opt/vmware/vcloud-director/data/transfer...done
Uninstalling previous release...done

The installer displays a warning of the following form if you did not install the VMware public key on the target server.

warning: installation-file.rpm: Header V3 RSA/SHA1 signature: NOKEY, key ID 66fd4949

The installer displays a warning of the following form when it makes changes to the existing global.properties file on the target server.

warning: /opt/vmware/vcloud-director/etc/global.properties created as /opt/vmware/vcloud-director/etc/global.properties.rpmnew

Most upgrades require this sort of change, and display this warning. If you have made any changes to the existing global.properties file, you can retrieve them from global.properties.rpmnew.

8 (Optional) Update logging properties.

After an upgrade, new logging properties are written to the file /opt/vmware/vcloud-director/etc/log4j.properties.rpmnew.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you did not change existing logging properties</td>
<td>Copy this file to /opt/vmware/vcloud-director/etc/log4j.properties.</td>
</tr>
<tr>
<td>If you changed logging properties</td>
<td>Merge /opt/vmware/vcloud-director/etc/log4j.properties.rpmnew file with the existing /opt/vmware/vcloud-director/etc/log4j.properties. Merging these files preserves your changes.</td>
</tr>
</tbody>
</table>

When the vCloud Director software upgrade is complete, the installer displays a message indicating where the old configuration files are stored, then reminds you to run the database upgrade tool.

What to do next

- If you have not already done so, upgrade the vCloud Director database that this server uses.
- If you already upgraded the vCloud Director database that this server group uses, you can restart the upgraded server. See “Start or Stop vCloud Director Services,” on page 36.

Upgrade the vCloud Director Database

After you upgrade a server in your vCloud Director server group, you must upgrade the group’s vCloud Director database before you restart vCloud Director services on the server.

All servers in a vCloud Director server group share the same database, so regardless of how many servers you are upgrading, you need to upgrade the database only once. After the database is upgraded, vCloud Director servers cannot connect to it until they, too, are upgraded.
Prerequisites

IMPORTANT Back up your existing database before you upgrade it. Use the procedures that your database software vendor recommends.

Verify that all vCloud Director cells are inactive. See “Use the Cell Management Tool to Quiesce and Shut Down a Server,” on page 41

Procedure

1. Open a console, shell, or terminal window, and type the following command to run the database upgrade script.

 /opt/vmware/vcloud-director/bin/upgrade

 IMPORTANT If the database upgrade script detects that an incompatible version of vShield Manager or NSX Manager is registered to this installation of vCloud Director, it displays a warning message and cancels the upgrade.

 One or more vShield Manager servers registered to this vCloud Director installation are not supported by the version of vCloud Director you are upgrading to. Upgrade canceled, please follow the procedures in the vShield Manager Upgrade Guide to upgrade those unsupported vShield Manager servers.
2 Respond to the database upgrade prompts.

 a Confirm that you want to continue with the database upgrade.

 Welcome to the vCloud Director upgrade utility

 This product is intended for use only by service providers under the
 terms and conditions of the VMware Service Provider Partner (VSPP)
 Program. If you are a member of the VSPP Program, please locate your
 license key before proceeding. If you are not a member of this program,
 do not proceed with this upgrade. Upgrading without a proper key will
 invalidate your support contract.

 This utility will apply several updates to the database. Please
 ensure you have created a backup of your database prior to continuing.

 Do you wish to upgrade the product now? [Y/N]:

 Take one of the following actions:

 | Option | Action |
 |---|--------|
 | Continue the upgrade. | Type y.|
 | Exit to the shell without making any changes in the current vCloud Director database. | Type n.|

 b (Optional) Wait for cells to become inactive, if necessary.

 If the database upgrade tool detects that any cells are still active, it prompts you to continue with
 the upgrade or exit.

 Found active cell. Name: "cell-01", IP Address: 10.150.151.190, Identifier: a2eb...
 Do you wish to upgrade the database while cells are still active? [Y/N]

 If you see this prompt, type n to exit to the shell, then wait five minutes and restart the database
 upgrade tool. If the database upgrade tool continues to warn you about cells that are still active,
 return to the procedure in “Use the Cell Management Tool to Quiesce and Shut Down a Server,” on
 page 41 and ensure that all cells have become inactive.

 After you have responded to all prompts, the database upgrade tool runs and displays progress
 messages.

 Executing upgrade task: Start UpdateStatementManager
 ...
 Successfully ran upgrade task
 Executing upgrade task: ...
 Successfully ran upgrade task
 ...
 Executing upgrade task: Stop UpdateStatementManager
 ...
 Successfully ran upgrade task
After the database is upgraded, the upgrade script offers to start vCloud Director services on this host.

Would you like to start the vCloud Director service now? If you choose not to start it now, you can manually start it at any time using this command:

```
  service vmware-vcd start
```

Start it now? [y/n]: y

Starting the vCloud Director service (this may take a moment).

Starting vmware-vcd-watchdog: [OK]
Starting vmware-vcd-cell: [OK]

Upgrade the Existing vShield Manager or NSX Manager That Is Associated with an Attached vCenter Server System

Before you upgrade a vCenter Server system and hosts attached to vCloud Director, you must upgrade the vShield Manager or NSX Manager that is associated with that vCenter Server system.

Upgrading vShield Manager or NSX Manager interrupts access to the administrative functions of vShield Manager or NSX Manager, but does not interrupt network services.

Prerequisites

- Verify that at least one upgraded cell in your vCloud Director installation is running before you begin the upgrade. The cell writes data about the upgraded vShield Manager or NSX Manager to the vCloud Director database.

- Verify that you have the items that are required for upgrading vShield Manager or NSX Manager, depending on which one you are upgrading.

<table>
<thead>
<tr>
<th>vShield Manager</th>
<th>NSX Manager</th>
</tr>
</thead>
</table>

Procedure

1. Upgrade the associated vShield Manager or NSX Manager installation by following the upgrade procedure that is appropriate for the product and version to which you are upgrading.

 CAUTION When you upgrade to a version of NSX Manager, do not upgrade the existing associated vShield Edge appliances to NSX Edge appliances. vCloud Director does not support NSX Edge appliances. When you use NSX Manager with vCloud Director, vCloud Director uses NSX Manager to create vShield Edge appliances.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade an associated vShield Manager to a later version of vShield Manager.</td>
<td>See the Upgrade vShield Manager information in the vShield Installation and Upgrade Guide at https://www.vmware.com/support/pubs/vshield_pubs.html. Upgrade only vShield Manager, and no other vShield components. Do not upgrade the existing associated vShield Edge appliances.</td>
</tr>
<tr>
<td>Upgrade an associated vShield Manager to NSX Manager, or upgrade an associated NSX Manager to a later version of NSX Manager.</td>
<td>See the Upgrade to NSX Manager information in the NSX Installation and Upgrade Guide at https://www.vmware.com/support/pubs/nsx_pubs.html. Upgrade only vShield Manager or NSX Manager, and no other vShield or NSX for vSphere components. Do not upgrade the existing associated vShield Edge appliances.</td>
</tr>
</tbody>
</table>

2. Repeat Step 1 for each vShield Manager or NSX Manager associated with the other vCenter Server systems registered to your cloud.
After the upgrade finishes, the now upgraded vShield Manager or NSX Manager notifies vCloud Director that the software is at a new version. It can take several minutes before the notification is sent and vCloud Director processes it.

What to do next
After you upgrade each associated vShield Manager or NSX Manager, you must upgrade all of the registered vCenter Server systems and hosts before you use vCloud Director to upgrade the associated vShield Edge appliances. See “Upgrade vCenter Server Systems, Hosts, and vShield Edge Appliances,” on page 48.

Upgrade vCenter Server Systems, Hosts, and vShield Edge Appliances
After you have upgraded vCloud Director and vShield Manager or NSX Manager, you must upgrade the vCenter Server systems and hosts attached to your cloud. After all of the attached vCenter Server systems and hosts are upgraded, then you must use vCloud Director to upgrade the associated vShield Edge appliances by redeploying edge gateways or resetting the vApp networks.

Prerequisites
Verify that you have already upgraded each vShield Manager or NSX Manager that is associated with the vCenter Server systems that are attached to your cloud. See “Upgrade the Existing vShield Manager or NSX Manager That Is Associated with an Attached vCenter Server System,” on page 47.

Procedure
1. Upgrade the attached vCenter Server system.
 See the vSphere Installation and Setup Guide.
2. Verify all vCloud Director public URLs and certificate chains.
 On the Administration tab of the vCloud Director Web console, click Public Addresses in the left pane. Enter values for all fields
3. (Optional) If you have configured vCloud Director to use vCenter Single Sign On, you must unregister and re-register vCloud Director with the vCenter Lookup Service.
 a. Log in to vCloud Director as a system administrator using a local or LDAP account. Do not use vCenter Single Sign On for this log in.
 b. Unregister vCloud Director with the vCenter Lookup Service.
 On the Administration tab of the vCloud Director Web console, click Federation in the left pane, and click Unregister. You must provide the appropriate vCenter administrator credentials to complete this action.
 c. Register vCloud Director with the vCenter Lookup Service.
 See “Configure vCloud Director to use vCenter Single Sign On” in the vCloud Director Administrator’s Guide
4. Refresh the vCenter Server system's registration with vCloud Director.
 a. In the vCloud Director Web console, click the Manage & Monitor tab and click vCenters in the left pane.
 b. Right-click the vCenter Server name and select Refresh.
 c. Click Yes.
5 Upgrade each host that the upgraded vCenter Server system supports.

See the *vSphere Installation and Setup Guide*. For each host, the upgrade requires the following steps:

a In the vCloud Director Web console, disable the host.

On the **Manage and Monitor** page, click **Hosts**, then right-click the host and select **Disable Host**.

b Use the vCenter Server system to put the host into maintenance mode and allow all the virtual machines on that host to migrate to another host.

c Upgrade the host.

To ensure that you have enough upgraded host capacity to support the virtual machines in your cloud, upgrade hosts in small batches. When you do this, host agent upgrades can complete in time to allow virtual machines to migrate back to the upgraded host.

d Use the vCenter Server system to reconnect the host.

e Upgrade the vCloud Director host agent on the host.

See “Upgrade an ESX/ESXi Host Agent” in the *vCloud Director Administrator’s Guide*.

f In the vCloud Director Web console, enable the host.

On the **Manage and Monitor** page, click **Hosts**, then right-click the host and select **Enable Host**.

g Use the vCenter Server system to take the host out of maintenance mode.

6 Use your upgraded vCloud Director to upgrade all vShield Edge appliances managed by the upgraded vShield Manager or NSX Manager associated with the upgraded vCenter Server system.

CAUTION If the upgraded vCenter Server system is associated with NSX Manager instead of vShield Manager, only use the methods described in this step to automatically upgrade the vShield Edge appliances using vCloud Director. Do not use any other methods to upgrade the associated vShield Edge appliances to NSX Edge appliances. vCloud Director does not support NSX Edge appliances. When you use NSX Manager with vCloud Director, vCloud Director uses NSX Manager to create vShield Edge appliances.

An appropriate upgrade of a vShield Edge appliance occurs automatically when you use either the vCloud Director Web console or REST API to reset a network that vShield Edge protects.

- For an edge gateway, redeploying the edge gateway upgrades the vShield Edge appliance associated with that edge gateway.

- For vApp networks that the virtual machines connect to, such as routed vApp networks, isolated vApp networks, or fenced organization virtual datacenter networks, resetting the vApp network from within the context of the vApp upgrades the vShield Edge appliance associated with that network. To use vCloud Director Web console to reset a vApp network from within the context of a vApp, navigate to the **Networking** tab for the vApp, display its networking details, right-click the vApp network, and select **Reset Network**.

For more information on how to redeploy edge gateways and reset vApp networks, see the vCloud Director Web console online help or the *vCloud API Programming Guide*, depending on which method you want to use.

What to do next

Repeat this procedure for the other vCenter Server systems registered to your cloud.
After you configure all servers in the vCloud Director server group and connect them to the database, you can initialize the server group’s database with a license key, system administrator account, and related information. When this process is complete, you can use the vCloud Director Web Console to complete the initial provisioning of your cloud.

Before you can run the vCloud Director Web Console, you must run the Setup wizard, which gathers the information that the Web Console requires before it can start. After the wizard is finished, the Web Console starts and displays the login screen. The vCloud Director Web Console provides a set of tools for provisioning and managing a cloud. It includes a Quickstart feature that guides you through steps like attaching vCloud Director to vCenter and creating an organization.

Prerequisites

- Complete the installation of all vCloud Director servers, and verify that vCloud Director services have started on all servers.
- Verify that you have the URL that the configuration script displays when it completes.

Note: To discover the URL of the Setup wizard after the script exits, look up the fully qualified domain name associated with the IP address you specified for the HTTP service during installation of the first server and use it to construct a URL of the form https://fully-qualified-domain-name, for example, https://mycloud.example.com. You can connect to the wizard at that URL.

Complete the installation of all vCloud Director servers, and verify that vCloud Director services have started on all servers.

Procedure

1. Open a Web browser and connect to the URL that the configuration script displays when it completes.

 Note: You might have to wait a few minutes after starting vCloud Director services for the Setup wizard or Web console to become ready.

2. Follow the prompts to complete the setup.

This chapter includes the following topics:

- “Review the License Agreement,” on page 52
- “Enter the License Key,” on page 52
- “Create the System Administrator Account,” on page 52
- “Specify System Settings,” on page 52
- “Ready to Log In to vCloud Director,” on page 53
Review the License Agreement

Before you can configure a vCloud Director server group, you must review and accept the end user license agreement.

Procedure
1. Review the license agreement.
2. Accept or reject the agreement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>To accept the license agreement</td>
<td>Click Yes, I accept the terms in the license agreement.</td>
</tr>
<tr>
<td>To reject the license agreement</td>
<td>No, I do not accept the terms in the license agreement.</td>
</tr>
</tbody>
</table>

If you reject the license agreement, you cannot proceed with vCloud Director configuration.

Enter the License Key

Each vCloud Director cluster requires a license to run. The license is specified as a product serial number. The product serial number is stored in the vCloud Director database.

The vCloud Director product serial number is not the same as the vCenter server license key. To operate a vCloud, you must have a vCloud Director product serial number and a vCenter server license key. You can obtain both types of license keys from the VMware License Portal.

Procedure
1. Obtain a vCloud Director product serial number from the VMware License Portal.
2. Type the product serial number in the Product serial number text box.

Create the System Administrator Account

Specify the user name, password, and contact information for the vCloud Director system administrator. The vCloud Director system administrator has superuser privileges throughout the cloud. You create the initial system administrator account during vCloud Director setup. After installation and configuration is complete, this system administrator can create additional system administrator accounts as needed.

Procedure
1. Type the system administrator’s user name.
2. Type the system administrator’s password and confirm it.
3. Type the system administrator’s full name.
4. Type the system administrator’s email address.

Specify System Settings

You can specify the system settings that control how vCloud Director interacts with vSphere and vShield Manager or NSX Manager.

The configuration process creates a folder in the attached vCenter Server system for vCloud Director to use and specifies an installation ID to use when you create MAC addresses for virtual NICs.

Procedure
1. Type a name for the vCloud Director vCenter Server folder in the System name field.
2 Use the **Installation ID** field to specify the installation ID for this installation of vCloud Director.

If a datacenter includes multiple installations of vCloud Director, each installation must specify a unique installation ID.

Ready to Log In to vCloud Director

After you provide all of the information that the Setup Wizard requires, you can confirm your settings and complete the wizard. After the wizard finishes, the login screen of the vCloud Director Web Console appears.

The Ready to Log In page lists all the settings you have provided to the wizard. Review the settings carefully.

Prerequisites

Verify that you have access to the vCenter Server system that you want to use with your cloud, and to that vCenter Server system's associated vShield Manager or NSX Manager. The vCloud Director Web Console requires access to the installations of vCenter Server and vShield Manager or NSX Manager that you want to configure as part of this vCloud Director installation. These installations must be running and configured to work with each other before you finish this task. For more information about the configuration requirements, see “vCloud Director Hardware and Software Requirements,” on page 9.

Procedure

- To change a setting, click **Back** until you get to the page where the setting originated.
- To confirm all settings and complete the configuration process, click **Finish**.

When you click **Finish**, the wizard applies the settings you specified, then starts the vCloud Director Web Console and displays its login screen.

What to do next

Use the displayed login screen to log in to the vCloud Director Web Console using the user name and password you provided for the system administrator account. After you have logged in, the console displays a set of Quickstart steps that you must complete before you can use this cloud. When the steps are complete, the Guided Tasks are enabled, and your cloud is ready for use.
The cell management tool is a command-line utility that you can use to manage a cell and its SSL certificates, and to export tables from the vCloud Director database. Superuser or system administrator credentials are required for some operations.

The cell management tool is installed in /opt/vmware/vcloud-director/bin/cell-management-tool.

Listing Available Commands

To list the available cell management tool commands, use the following command line.

```
cell-management-tool -h
```

Example: Cell Management Tool Usage Help

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool -h

usage: cell-management-tool
-h,--help   print this message

Available commands:
cell – Manipulates the Cell and core components
certificates – Reconfigures the SSL certificates for the cell
ciphers – Reconfigure the list of disallowed SSL ciphers for the cell
configure-metrics – Collects and stores properties necessary for collecting and querying metrics
data
dbextract – Exports the data from the given set of tables
fix-scheduler-data – Scan database for corrupt scheduler data. Fix scheduler job data if corrupt.
generate-certs – Generates self-signed SSL certificates for use with vCD cell.
recover-password – Change a forgotten System Administrator password. Database credentials are required.
fail-tasks – Fail all tasks running on this cell and set a custom failure message.

For command specific help:
cell-management-tool <commandName> -h
```

Managing a Cell on page 56

Use the `cell` command of the cell management tool to suspend the task scheduler so that new tasks cannot be started, to check the status of active tasks, to control cell maintenance mode, and to shut down the cell gracefully.
- **Exporting Database Tables** on page 57
 Use the `dbextract` command of the cell management tool to export data from the vCloud Director database.

- **Detecting and Repairing Corrupted Scheduler Data** on page 60
 If you know the vCloud Director database username and password, you can use the `fix-scheduler-data` command of the cell management tool to scan the database for corrupt scheduler data and repair that data as needed.

- **Replacing SSL Certificates** on page 60
 Use the `certificates` command of the cell management tool to replace the cell’s SSL certificates.

- **Generating Self-Signed SSL Certificates** on page 61
 Use the `generate-certs` command of the cell management tool to generate new self-signed SSL certificates for the cell.

- **Managing the List of Allowed SSL Ciphers** on page 62
 Use the `ciphers` command of the cell management tool to configure the set of cipher suites that the cell offers to use during the SSL handshake process.

- **Managing the List of Allowed SSL Protocols** on page 64
 Use the `ssl-protocols` command of the cell management tool to configure the set of SSL protocols that the cell offers to use during the SSL handshake process.

- **Configuring the Metrics Database Connection** on page 65
 Use the `configure-metrics` command of the cell management tool to connect the cell to the optional metrics database.

- **Recovering the System Administrator Password** on page 66
 If you know the vCloud Director database username and password, you can use the `recover-password` command of the cell management tool to recover the vCloud Director system administrator password.

- **Update the Failure Status of a Task** on page 66
 Use the `fail-tasks` command of the cell management tool to update the completion status associated with tasks that were running when the cell was deliberately shut down. You cannot use the `fail-tasks` command unless all cells have been shut down.

Managing a Cell

Use the `cell` command of the cell management tool to suspend the task scheduler so that new tasks cannot be started, to check the status of active tasks, to control cell maintenance mode, and to shut down the cell gracefully.

To manage a cell, use a command line with the following form:

```
cell-management-tool -u sysadmin-username -p sysadmin-password cell command
```

- **sysadmin-username**
 Username of a vCloud Director system administrator.

- **sysadmin-password**
 Password of the vCloud Director system administrator.

Note You can supply the vCloud Director system administrator password on the `cell-management-tool` command line, but it is more secure to omit the password. This causes the `cell-management-tool` to prompt for the password, which it does not display on the screen as you type.

- **command**
 cell subcommand.
Table 5-1. Cell Management Tool Options and Arguments, cell Subcommand

<table>
<thead>
<tr>
<th>Command</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>--maintenance (-m)</td>
<td>true or false</td>
<td>Controls cell maintenance mode. The argument true puts the cell into maintenance mode. (You must quiesce the cell first.) The argument false releases the cell from maintenance mode.</td>
</tr>
<tr>
<td>--quiesce (-q)</td>
<td>true or false</td>
<td>Quiesces activity on the cell. The argument true suspends the scheduler. The argument false restarts the scheduler.</td>
</tr>
<tr>
<td>--shutdown (-s)</td>
<td>None</td>
<td>Shuts down vCloud Director services on the server.</td>
</tr>
<tr>
<td>--status (-t)</td>
<td>None</td>
<td>Displays information about the number of tasks running on the cell and the status of the cell.</td>
</tr>
<tr>
<td>--status-verbose (-tt)</td>
<td>None</td>
<td>Displays verbose information about the tasks running on the cell and the status of the cell.</td>
</tr>
</tbody>
</table>

Example: Getting Task Status

The following cell-management-tool command line supplies system administrator credentials and returns the count of running tasks. When the Job count value is 0 and the Is Active value is false, you can safely shut down the cell.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool -u administrator cell --status
Job count = 3
Is Active = true
In Maintenance Mode = false
```

Exporting Database Tables

Use the dbextract command of the cell management tool to export data from the vCloud Director database.

To export database tables, use a command line with the following form:

```
cell-management-tool dbextract options
```

Table 5-2. Cell Management Tool Options and Arguments, dbextract Subcommand

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>-categories</td>
<td>A comma-separated list of table categories to export.</td>
<td>Optional. NETWORKING is the only supported category</td>
</tr>
<tr>
<td>-dataFile</td>
<td>An absolute path to a file describing the data to export.</td>
<td>Optional. If not supplied, the command uses $VCLOUD_HOME/etc/data_to_export.properties. See “Specifying Tables and Columns to Export,” on page 58.</td>
</tr>
</tbody>
</table>
Table 5-2. Cell Management Tool Options and Arguments, `dbextract` Subcommand (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dumpFolder</td>
<td>An absolute path to the folder in which to create the dump. The folder must exist and be writable by vcloud.vcloud.</td>
<td>All data will be exported to a file in this folder.</td>
</tr>
<tr>
<td>-exportSettingsFile</td>
<td>An absolute path to a data export settings properties file.</td>
<td>Optional. If not supplied, the command uses $VCLOUD_HOME/etc/data_export_settings.ini. See “Limiting and Ordering Exported Rows,” on page 59.</td>
</tr>
<tr>
<td>-properties</td>
<td>An absolute path to a database connection properties file.</td>
<td>Optional. If not supplied, the command uses the database connection properties in $VCLOUD_HOME/etc/global.properties. See “Specifying a Properties File,” on page 58.</td>
</tr>
<tr>
<td>-tables</td>
<td>A comma-separated list of tables.</td>
<td>Optional. Export all tables to see individual table names.</td>
</tr>
</tbody>
</table>

Specifying a Properties File

By default, the `dbextract` command extracts data from the vCloud Director database using the database connection information in the current cell’s `$VCLOUD_HOME/etc/global.properties` file. To extract data from a different vCloud Director database, specify the database connection properties in a file and use the `-properties` option to provide the pathname to that file on the command line. The properties file is a UTF-8 file that has the following format.

```
username=USERNAME
password=PASSWORD
servicename=SERVICE_NAME
port=PORT
database-ip=DATABASE_IP
db-type=DB_TYPE
```

- `username`: The vCloud Director database user name.
- `password`: The vCloud Director database password.
- `servicename`: The database service name. For example, `orcl.example.com`.
- `port`: The database port.
- `database-ip`: The IP address of the database server.
- `db-type`: The database type. Must be `Oracle` or `MS_SQL`.

Specifying Tables and Columns to Export

To restrict the set of data exported, use the `-exportSettingsFile` option and create a `data_to_export.properties` file that specifies individual tables and, optionally, columns to export. This file is a UTF-8 file that contains zero or more lines of the form `TABLE_NAME:COLUMN_NAME`.

- `TABLE_NAME`: The name of a table in the database. To see a list of table names, export all tables.
- `COLUMN_NAME`: The name of a column in the specified `TABLE_NAME`.
This example data_to_export.properties file exports columns from the ACL and ADDRESS_TRANSLATION tables.

ACL:ORG_MEMBER_ID
ACL:SHARABLE_ID
ACL:SHARABLE_TYPE
ACL:SHARING_ROLE_ID
ADDRESS_TRANSLATION:EXTERNAL_ADDRESS
ADDRESS_TRANSLATION:EXTERNAL_PORTS
ADDRESS_TRANSLATION:ID
ADDRESS_TRANSLATION:INTERNAL_PORTS
ADDRESS_TRANSLATION:NIC_ID

The command expects to find this file in $VCLOUD_HOME/etc/data_to_export.properties, but you can specify another path.

Limiting and Ordering Exported Rows

For any table, you can specify how many rows to export and how to order the exported rows. Use the -exportSettingsFile option and create a data_export_settings.ini file that specifies individual tables. This file is a UTF-8 file that contains zero or more entries of the following form:

```
[TABLE_NAME]
rowlimit=int
orderby=COLUMN_NAME
```

TABLE_NAME

The name of a table in the database. To see a list of table names, export all tables.

COLUMN_NAME

The name of a column in the specified TABLE_NAME.

This example data_export_settings.ini restricts data exported from the AUDIT_EVENT table to the first 10000 rows and orders the rows by the value in the event_time column

```
[AUDIT_EVENT]
rowlimit=10000
orderby=event_time
```

The command expects to find this file in $VCLOUD_HOME/etc/data_export_settings.ini, but you can specify another path.

Example: Exporting All Tables From the Current vCloud Director Database.

This example exports all tables of the current vCloud Director database to the file /tmp/dbdump.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool dbextract -dumpFolder /tmp/dbdump
This utility outputs data from your vCloud Director system that may contain sensitive data.
Do you want to continue and output the data (y/n)?
y
Exporting data now. Please wait for the process to finish
Exported 144 of 145 tables.
```
Detecting and Repairing Corrupted Scheduler Data

If you know the vCloud Director database username and password, you can use the `fix-scheduler-data` command of the cell management tool to scan the database for corrupt scheduler data and repair that data as needed.

To scan database for corrupt scheduler data, use a command line with the following form:

```
cell-management-tool fix-scheduler-data options
```

Table 5-3. Cell Management Tool Options and Arguments, fix-scheduler-data Subcommand

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>--dbuser</td>
<td>The user name of the vCloud Director database user.</td>
<td>Must be supplied on the command line.</td>
</tr>
<tr>
<td>--dbpassword</td>
<td>The password of the vCloud Director database user.</td>
<td>Prompted for if not supplied.</td>
</tr>
</tbody>
</table>

Replacing SSL Certificates

Use the `certificates` command of the cell management tool to replace the cell’s SSL certificates.

The `certificates` command of the cell management tool automates the process of replacing a cell’s existing certificates with new ones stored in a JCEKS keystore. The `certificates` command helps you replace self-signed certificates with signed ones. To create a JCEKS keystore containing signed certificates, see “Create and Import a Signed SSL Certificate,” on page 18.

To replace the cell’s SSL certificates, use a command with the following form:

```
cell-management-tool certificates options
```

Table 5-4. Cell Management Tool Options and Arguments, certificates Subcommand

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>--config (-c)</td>
<td>full pathname to the cell’s global.properties file</td>
<td>Defaults to $VCLOUD_HOME/etc/global.properties.</td>
</tr>
<tr>
<td>--httpks (-j)</td>
<td>None</td>
<td>Generate a keystore file named certificates for use by the http endpoint.</td>
</tr>
<tr>
<td>--consoleproxyks (-p)</td>
<td>None</td>
<td>Generate a keystore file named proxycertificates for use by the console proxy endpoint.</td>
</tr>
<tr>
<td>--responses (-r)</td>
<td>full pathname to the cell’s responses.properties file</td>
<td>Defaults to $VCLOUD_HOME/etc/responses.properties.</td>
</tr>
</tbody>
</table>
Table 5-4. Cell Management Tool Options and Arguments, certificates Subcommand (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--keystore (-k)</td>
<td>keystore-pathname</td>
<td>Full pathname to a JCEKS keystore containing the signed certificates. Deprecated --s short form replaced by -k.</td>
</tr>
<tr>
<td>--keystore-password (-w)</td>
<td>keystore-password</td>
<td>Password for the JCEKS keystore referenced by the --keystore option. Replaces deprecated --kspassword and --keystorepwd options.</td>
</tr>
</tbody>
</table>

Example: Replacing Certificates

You can omit the --config and --responses options unless those files were moved from their default locations. In this example, a keystore at /tmp/my-new-certs.ks has the password kspw. This example replaces the cell’s existing http endpoint certificate with the one found in /tmp/my-new-certs.ks.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool certificates -j -k /tmp/my-new-certs.ks -w kspw
Certificate replaced by user specified keystore at /tmp/new.ks.
You will need to restart the cell for changes to take effect.
```

NOTE You must restart the cell after you replace the certificates.

Generating Self-Signed SSL Certificates

Use the generate-certs command of the cell management tool to generate new self-signed SSL certificates for the cell.

The generate-certs command of the cell management tool automates the procedure shown in “Create a Self-Signed SSL Certificate,” on page 21.

To generate new self-signed SSL certificates and add them to a new or existing keystore, use a command line with the following form:

```
cell-management-tool generate-certs options
```

Table 5-5. Cell Management Tool Options and Arguments, generate-certs Subcommand

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>--expiration (-x)</td>
<td>days-until-expiration</td>
<td>Number of days until the certificates expire. Defaults to 365</td>
</tr>
<tr>
<td>--issuer (-i)</td>
<td>name=value [, name=value, ...]</td>
<td>X.509 distinguished name of the certificate issuer. Defaults to CN=FQDN, where FQDN is the fully-qualified domain name of the cell or its IP address if no fully-qualified domain name is available. If you specify multiple attribute and value pairs, separate them with commas and enclose the entire argument in quotation marks.</td>
</tr>
<tr>
<td>--httpcert (-j)</td>
<td>None</td>
<td>Generate a certificate for the http endpoint.</td>
</tr>
</tbody>
</table>
Table 5-5. Cell Management Tool Options and Arguments, generate-certs Subcommand (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--key-size (-s)</td>
<td>key-size</td>
<td>Size of key pair expressed as an integer number of bits. Defaults to 2048. Note that key sizes smaller than 1024 are no longer supported per NIST Special Publication 800-131A.</td>
</tr>
<tr>
<td>--keystore-pwd (-w)</td>
<td>keystore-password</td>
<td>Password for the keystore on this host.</td>
</tr>
<tr>
<td>--out (-o)</td>
<td>keystore-pathname</td>
<td>Full pathname to the keystore on this host.</td>
</tr>
<tr>
<td>--consoleproxycert (-p)</td>
<td>None</td>
<td>Generate a certificate for the console proxy endpoint.</td>
</tr>
</tbody>
</table>

NOTE To maintain compatibility with previous releases of this subcommand, omitting both -j and -p has the same result as supplying both -j and -p.

Example: Creating Self-Signed Certificates

Both of these examples assume a keystore at /tmp/cell.ks that has the password kspw. This keystore is created if it does not already exist.

This example creates the new certificates using the defaults. The issuer name is set to CN=Unknown. The certificate uses the default 2048-bit key length and expires one year after creation.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool generate-certs -j -p -o /tmp/cell.ks -w kspw
New keystore created and written to /tmp/cell.ks.
```

This example creates a new certificate for the http endpoint only. It also specifies custom values for key size and issuer name. The issuer name is set to CN=Test, L=London, C=GB. The new certificate for the http connection has a 4096 bit key and expires 90 days after creation. The existing certificate for the console proxy endpoint is unaffected.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool generate-certs -j -o /tmp/cell.ks -w kspw -i "CN=Test, L=London, C=GB" -s 4096 -x 90
New keystore created and written to /tmp/cell.ks.
```

Managing the List of Allowed SSL Ciphers

Use the `ciphers` command of the cell management tool to configure the set of cipher suites that the cell offers to use during the SSL handshake process.

When a client makes an SSL connection to a vCloud Director cell, the cell offers to use only those ciphers that are configured on its default list of allowed ciphers. Several ciphers are not on this list, either because they are not strong enough to secure the connection, or because they are known to contribute to SSL connection failures. When you install or upgrade vCloud Director, the installation or upgrade script examines the cell's certificates. If any of the certificates are encrypted using a cipher that is not on the list of allowed ciphers, the script modifies the cell's configuration to allow use of that cipher and displays a warning. You can continue using the existing certificates despite their dependence on these ciphers, or you can take the following steps to replace the certificates and reconfigure the list of allowed ciphers:

1. Create new certificates that do not use any of the disallowed ciphers. You can use `cell-management-tool ciphers -a` as shown in “Example: List All Allowed Ciphers,” on page 63 to list all the ciphers that are allowed in the default configuration.
2 Use the `cell-management-tool certificates` command to replace the cell's existing certificates with the new ones.

3 Use the `cell-management-tool ciphers` command to reconfigure the list of allowed ciphers to exclude any ciphers not used by the new certificates. Excluding these ciphers can make it faster to establish an SSL connection to the cell, since the number of ciphers offered during the handshake is reduced to the practical minimum.

IMPORTANT Because the VMRC console requires the use of the AES256-SHA and AES128-SHA ciphers, you cannot disallow them if your vCloud Director clients use the VMRC console.

To manage the list of allowed SSL ciphers, use a command line with the following form:

```bash
cell-management-tool ciphers options
```

Table 5-6. Cell Management Tool Options and Arguments, ciphers Subcommand

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--help (-h)</code></td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td><code>--all-allowed (-a)</code></td>
<td>None</td>
<td>List all allowed ciphers.</td>
</tr>
<tr>
<td><code>--compatible-reset (-c)</code></td>
<td>None</td>
<td>Reset to default list of allowed ciphers, and also allow ciphers used by this cell's certificates.</td>
</tr>
<tr>
<td><code>--disallow (-d)</code></td>
<td>Comma-separated list of cipher names, as published at http://www.openssl.org/docs/apps/ciphers.html</td>
<td>Disallow the ciphers in specified comma-separated list.</td>
</tr>
<tr>
<td><code>--list (-l)</code></td>
<td>None</td>
<td>List currently configured ciphers.</td>
</tr>
<tr>
<td><code>--reset (-r)</code></td>
<td>None</td>
<td>Reset to default list of allowed ciphers. If this cell's certificates use disallowed ciphers, you will not be able to make an SSL connection to the cell until you install new certificates that use an allowed cipher.</td>
</tr>
</tbody>
</table>

Example: List All Allowed Ciphers

Use the `--all-allowed (-a)` option to list all the ciphers that the cell is currently allowed to offer during an SSL handshake.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool ciphers -a
```

* TLS_DHE_DSS_WITH_AES_256_CBC_SHA
* TLS_DHE_DSS_WITH_AES_128_CBC_SHA
* TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
* TLS_DHE_RSA_WITH_AES_256_CBC_SHA
* TLS_DHE_RSA_WITH_AES_128_CBC_SHA
* TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
* TLS_RSA_WITH_AES_256_CBC_SHA
* TLS_RSA_WITH_AES_128_CBC_SHA
* TLS_RSA_WITH_3DES_EDE_CBC_SHA
* TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
* TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
Example: Disallow Two Ciphers

Use the `--disallow (-d)` option to remove one or more ciphers from the list of allowed ciphers. This option requires at least one cipher name. You can supply multiple cipher names in a comma-separated list. You can obtain names for this list from the output of `ciphers --a`. This example removes two ciphers listed in the previous example.

```
[root@cell1 /opt/vmware/vcloud-director/bin]#
./cell-management-tool ciphers --d
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
```

Managing the List of Allowed SSL Protocols

Use the `ssl-protocols` command of the cell management tool to configure the set of SSL protocols that the cell offers to use during the SSL handshake process.

When a client makes an SSL connection to a vCloud Director cell, the cell offers to use only those protocols that are configured on its list of allowed SSL protocols. Several protocols, including SSLv3 and SSLv2Hello, are not on the default list because they are known to have serious security vulnerabilities.

To manage the list of allowed SSL protocols, use a command line with the following form:

```
cell-management-tool ssl-protocols options
```

Table 5-7. Cell Management Tool Options and Arguments, `ssl-protocols` Subcommand

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>--all-allowed (-a)</td>
<td>None</td>
<td>List all SSL protocols that vCloud Director is able to support.</td>
</tr>
<tr>
<td>--disallow (-d)</td>
<td>Comma-separated list of SSL protocol names.</td>
<td>Reconfigure the list of disallowed SSL protocols to the ones specified in the list.</td>
</tr>
<tr>
<td>--list (-l)</td>
<td>None</td>
<td>List the set of allowed SSL protocols that vCloud Director is currently configured to support.</td>
</tr>
<tr>
<td>--reset (-r)</td>
<td>None</td>
<td>Reset the list of configured SSL protocols to the factory default</td>
</tr>
</tbody>
</table>

IMPORTANT You must re-start the cell after running `ssl-protocols --disallow` or `ssl-protocols reset`
Example: List Allowed and Configured SSL Protocols

Use the \(--all-allowed\) option to list all the SSL protocols that the cell can be allowed to offer during an SSL handshake.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool ssl-protocols -a
```

Product default SSL protocols:

```
TLSv1.2
TLSv1.1
TLSv1
SSLv3
SSLv2Hello
```

This list is typically a superset of the SSL protocols that the cell is configured to support. To list those SSL protocols, use the \(--list\) option.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool ssl-protocols -l
```

Allowed SSL protocols:

```
TLSv1.2
TLSv1.1
TLSv1
```

Example: Reconfigure the List of Disallowed SSL Protocols

Use the \(--disallow\) option to reconfigure the list of disallowed SSL protocols. This option requires a comma-separated list of the subset of allowed protocols produced by `ssl-protocols -a`.

This example removes the TLSv1 SSL protocol from the list of allowed SSL protocols.

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool ssl-protocols -d TLSv1,SSLv3,SSLv2Hello
```

You must re-start the cell after running this command.

Configuring the Metrics Database Connection

Use the `configure-metrics` command of the cell management tool to connect the cell to the optional metrics database.

vCloud Director can collect metrics that provide current and historic information about virtual machine performance and resource consumption. Data for historic metrics is stored in a KairosDB database backed by Cassandra. See Chapter 6, “Install and Configure Optional Database Software to Store and Retrieve Historic Virtual Machine Performance Metrics,” on page 69.

To create a connection from KairosDB to a vCloud Director, use a command line with the following form:

```
cell-management-tool configure-metrics options
```
Table 5-8. Cell Management Tool Options and Arguments, configure-metrics Subcommand

<table>
<thead>
<tr>
<th>Command</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>--repository-host</td>
<td>Host name or IP address of KairosDB host</td>
<td>If you have multiple installations of KairosDB, you must supply the load-balancer address here.</td>
</tr>
<tr>
<td>--repository-port</td>
<td>KairosDB port to use.</td>
<td>By default, KairosDB listens on port 8080.</td>
</tr>
</tbody>
</table>

Example: Configuring a Metrics Database Connection

This example configures system to use a KairosDB instance hosted at IP address 10.0.0.1 at the default port. The address can be either the address of a single machine running a single instance of KairosDB, or the address of a load balancer that distributes requests to multiple installations of KairosDB.

```bash
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool configure-metrics --repository-host 10.0.0.1 --repository-port 8080
```

Recovering the System Administrator Password

If you know the vCloud Director database username and password, you can use the `recover-password` command of the cell management tool to recover the vCloud Director system administrator password.

With the `recover-password` command of the cell management tool, a user who knows the vCloud Director database username and password can recover the vCloud Director system administrator password.

To recover the system administrator password, use a command line with the following form:

```bash
cell-management-tool recover-password options
```

Table 5-9. Cell Management Tool Options and Arguments, recover-password Subcommand

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>--dbuser</td>
<td>The user name of the vCloud Director database user.</td>
<td>Must be supplied on the command line.</td>
</tr>
<tr>
<td>--dbpassword</td>
<td>The password of the vCloud Director database user.</td>
<td>Prompted for if not supplied.</td>
</tr>
</tbody>
</table>

Update the Failure Status of a Task

Use the `fail-tasks` command of the cell management tool to update the completion status associated with tasks that were running when the cell was deliberately shut down. You cannot use the `fail-tasks` command unless all cells have been shut down.

When you quiesce a cell using the `cell-management-tool -q` command, running tasks should terminate gracefully within a few minutes. If tasks continue to run on a cell that has been quiesced, the superuser can shut down the cell, which forces any running tasks to fail. After a shutdown that forced running tasks to fail, the superuser can run `cell-management-tool fail-tasks` to update the completion status of those tasks.

Updating a task's completion status in this way is optional but helps maintain the integrity of system logs by clearly identifying failures caused by an administrative action.
To generate a list of tasks that are still running on a quiesced cell, use a command line with the following form:

cell-management-tool -u sysadmin-username cell --status-verbose

Table 5-10. Cell Management Tool Options and Arguments, fail-tasks Subcommand

<table>
<thead>
<tr>
<th>Command</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help (-h)</td>
<td>None</td>
<td>Provides a summary of available commands in this category.</td>
</tr>
<tr>
<td>--message (-m)</td>
<td>Message text.</td>
<td>Message text to place in task completion status.</td>
</tr>
</tbody>
</table>

Example: Fail Tasks Running on the Cell

This example updates the task completion status associated with a task that was still running when the cell was shut down.

[example]

```
[root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool fail-tasks -m "administrative shutdown"
Operation: IMPORT_SINGLETON_VAPP, Start time: 12/16/13 6:41 PM, Username: system, Organization: org1
Would you like to fail the tasks listed above?
```

Type y to update the task with a completion status of **administrative shutdown**. Type n to allow the task to continue running.

NOTE If multiple tasks are returned in the response, you must decide to fail all of them or take no action. You cannot choose a subset of tasks to fail.
vCloud Director can collect metrics that provide current and historic information about virtual machine performance and resource consumption for the virtual machines that are in your cloud. Data for historic metrics is stored in a KairosDB database backed by a Cassandra cluster.

Cassandra and KairosDB are open source databases that, when deployed together, provide a scalable, high-performance solution for collecting time series data like virtual machine metrics. If you want your cloud to support retrieval of historic metrics from virtual machines, you must install and configure Cassandra and KairosDB, then use the cell-management-tool utility to connect vCloud Director to KairosDB. Retrieval of current metrics does not require optional database software.

To support retrieval of historic metrics, vCloud Director requires a Cassandra cluster. A Cassandra cluster consists of one or more machines on which you have installed Cassandra and are running the Cassandra service. For a typical vCloud Director installation, you should have at least three machines in the Cassandra cluster. Because the vCloud Director metrics monitoring feature uses a replication factor of two, having three machines, the nodes, in the Cassandra cluster ensures that a node is always available to handle a transaction. You can use a single Cassandra cluster for your vCloud Director installation.

You also need at least one instance of KairosDB configured to work with your Cassandra cluster. If your cloud collects historic metrics from many virtual machines, additional instances of KairosDB might be needed. You can either install and configure KairosDB on one of the Cassandra nodes and point the cell management tool to that endpoint, or install and configure KairosDB on each Cassandra node, add a load balancer in front of the configuration, and point the cell management tool at the load balancer endpoint. Because vCloud Director expects to communicate with KairosDB at a single IP address, installations that include multiple instances of KairosDB must use a load balancer to provide that address and distribute vCloud Director requests to the KairosDB instances.

Prerequisites

- Verify that vCloud Director is installed and running before you configure the optional database software.
- Obtain either Cassandra 1.2.x or Cassandra 2.0.x from http://cassandra.apache.org/download/.
- Obtain KairosDB 0.9.1 from https://code.google.com/p/kairosdb/.
- Complete the installation and configuration of the Cassandra cluster that you plan to use with your vCloud Director installation, according to this configuration:
 - Cassandra 1.2.x or Cassandra 2.0.x is installed on at least three machines that are connected to the same network that your vCloud Director cells use.
 - The machines are configured to have their own physical storage, and not shared storage.
The machines are configured as a Cassandra cluster.

Java Native Access (JNA) version 3.2.7 or later is enabled for the Cassandra cluster, to improve performance of memory usage and disk access.

Complete the installation and configuration of at least one instance of KairosDB 0.9.1 on one of the Cassandra nodes, to use your Cassandra cluster as its database. You can also install and configure KairosDB on each Cassandra node if you add a load balancer in front of that configuration.

Verify that KairosDB and Cassandra are configured correctly. Use a Web browser to browse to http://KairosDB-IP:8080/api/v1/metricnames. If the page opens without an error, KairosDB and Cassandra are configured correctly.

Verify that you can run the service command of the cell-management-tool utility. For details about the service command, see “Start or Stop vCloud Director Services,” on page 36.

Procedure

1. Use the cell-management-tool utility to configure a connection between vCloud Director and KairosDB.

 Use a command like this, where KairosDB-IP is the IP address of the machine on which you installed KairosDB, or the IP address of the load balancer you are using to distribute requests to multiple instances of KairosDB.

   ```
   [root@cell1 /opt/vmware/vcloud-director/bin]# ./cell-management-tool configure-metrics --repository-host KairosDB-IP --repository-port 8080
   ```

2. Restart each vCloud Director cell using the service command of the cell-management-tool utility.
Index

A
AMQP broker, to install and configure 25
architecture diagram 7

B
browsers, supported 11

C
cell management tool
cell command 56
certificates command 60
ciphers command 62
configure-metrics command 65
dbextract command 57
fail-tasks command 66
generate-certs command 61
options 55
ssl-protocols command 64
certificate
self-signed 21
signed 18
configuration, confirm settings and complete 53

D
database
about 15
connection details 30
corrupted scheduler data 60
Oracle 15
SQL Server 16
supported platforms 9
to upgrade 44
databases, optional 69

F
firewall, ports and protocols 14

G
guest customization, preparing 35

H
host, to upgrade 48

I
installation
about 5
and capacity planning 8
architecture diagram 7
creating a server group 27
of first server 28
of more servers 34
overview of 7
to configure 51
uninstalling 37
Installation ID, to specify 52

J
Java, required JRE version 11

K
keystore 18

L
license agreement 52

M
Microsoft Sysprep 35

N
network
configuration requirements 13
security of 14
NSX Manager
installing and configuring 24
supported releases 9
to upgrade 47

P
product serial number
to enter 52
to obtain 52

R
RPM file, to verify digital signature 26

S
services, to start 36
System Administrator account
to create 52
to recover password 66
System Name, to specify 52
U
upgrade
database 44
of first server 42
upgrading, workflows for 39

V
vCenter, supported releases 9
vCenter Server, to upgrade 48
vShield Manager
installing and configuring 24
supported releases 9
to upgrade 47