vCloud Air Advanced Networking Services Guide

This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition. To check for more recent editions of this document, see http://www.vmware.com/support/pubs.
You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com
Contents

Preface 5

1 Introducing Advanced Networking Services for vCloud Air 7
 Upgrade an Edge Gateway To Advanced Networking Services 7
 Log In and Navigate to Advanced Networking Services 9
 Statistics and Logs for Advanced Networking Services 11

2 Advanced Routing for vCloud Air 15
 Specify Global Configuration 15
 Add a Static Route 16
 Configure BGP 17
 Configure OSPF 18
 Configure Route Redistribution 20

3 Certificate and Security Group Management 23
 Certificate Management in vCloud Air 23
 Generate a Certificate Signing Request 23
 Configure a CA Signed Certificate 24
 Configure a Self-Signed Certificate 25
 Add a Certificate 25
 Add a Certificate Revocation List 26
 Security Objects in vCloud Air 26
 Create an IP Address Group 27
 Create a Service 27
 Create a Service Group 27

4 Network Security and Isolation 29
 Types of Firewalls in vCloud Air 29
 Edge Gateway Firewall 30
 Firewall for Trust Groups 30
 Manage Edge Gateway Firewall Rules 31
 Add an Edge Gateway Firewall Rule 31
 Edit an Edge Gateway Firewall Rule 34
 Change the Order of a Gateway Firewall Rule 35
 Manage Trust Groups Firewall Rules 35
 Add a Trust Groups Firewall Rule 35
 Edit a Trust Groups Firewall Rule 38

5 Load Balancing 41
 Set Up Load Balancing 41
 Configure the Load Balancer Service 42
Preface

The vCloud Air Advanced Networking Services Guide for Dedicated Cloud and Virtual Private Cloud provides information about configuring networking for VMware® vCloud Air Advanced Networking Services, including how to configure dynamic routing, firewall rules, load balancing, and VPN access.

Intended Audience

This guide is intended for network administrators and virtual administrators who will be configuring networking in vCloud Air. The information is written for experienced administrators who are familiar with virtual machine technology and networking concepts.

Related Documentation

Configuring networking for vCloud Air includes configuring basic and advanced networking features. See the vCloud Air Networking Guide for a description of the default network setup, how to add networks to vCloud Air, and how to add virtual machines to networks.

See also the vCloud Air User's Guide for information about the features available for your vCloud Air Dedicated Cloud and Virtual Private Cloud subscription services.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions of terms as they are used in VMware technical documentation, go to http://www.vmware.com/support/pubs.
Introducing Advanced Networking Services for vCloud Air

vCloud Air Advanced Networking Services, powered by the VMware NSX™ network virtualization platform, offer enhanced security controls and routing, and network scaling capabilities in the cloud.

Using vCloud Air Advanced Networking Services, customers can achieve unprecedented security and isolation in a public cloud. Advanced Networking Services deliver the following benefits:

- **Dynamic Routing:** Support routing protocols such as Border Gateway Protocol (BGP) and Open Shortest Path First (OSPF) to simplify network integration between on-premises and cloud-based environment, providing redundancy and continuity in cloud-hosted application deployment.

- **Fine-grained network security and isolation:** Support the use of object-based rule definitions to provide stateful network traffic isolation without requiring multiple virtual networks. Unique in the public cloud market, this “zero trust” security model prevents intruders from gaining full network access if an application or virtual machine is compromised. Advanced Networking Services dramatically simplify network configuration by using the same network security policies to protect applications on-premises and in the cloud and extend your zero trust security model for portable security no matter where an application is deployed.

- **More Advanced Networking Services:** Enhanced VPN support for point-to-site (IPsec VPN) and user (SSL VPN) connectivity, enhanced load balancing for HTTPS, and expanded network scalability.

Note
Advanced Networking Services includes two types of firewalls: the edge gateway firewall and the firewall to establish Trust Groups (called a distributed firewall in the Advanced Networking Services Web UI). Configuring the edge gateway firewall is available for both Dedicated Cloud and Virtual Private Cloud subscription services. However, configuring the firewall to establish Trust Groups is possible only when you have the vCloud Air Dedicated Cloud subscription service. For more information about the differences between these firewalls, see “Types of Firewalls in vCloud Air,” on page 29.

This chapter includes the following topics:

- “Upgrade an Edge Gateway To Advanced Networking Services,” on page 7
- “Log In and Navigate to Advanced Networking Services,” on page 9
- “Statistics and Logs for Advanced Networking Services,” on page 11

Upgrade an Edge Gateway To Advanced Networking Services

Upgrade an edge gateway in your vCloud Air deployment to use the new Advanced Networking Services features and functionality.

You upgrade to Advanced Networking Services on a gateway-by-gateway basis. Meaning, you select which edge gateways to upgrade and during the upgrade process, you can continue to operate edge gateways using the existing VMware network technology. See the vCloud Air Networking Guide for information.
When you upgrade an edge gateway to Advanced Networking Services, the edge gateway configuration is maintained through the upgrade. For example, if you configured firewall rules or load balancing, the edge gateway will maintain the firewall settings and be configured for load balancing after the upgrade.

Note After upgrading an edge gateway, you cannot revert the edge gateway to its previous state. Also, if you are an API user, the APIs change post-upgrade to use the new features and functionality.

Prerequisites
To upgrade an edge gateway to Advanced Networking Services, you must meet these prerequisites:

- You have a license for Advanced Networking Services. Contact your VMware Customer Success Team representative for information. If you have not obtained a license, upgrading an edge gateway does not succeed.
- You have subscribed to a vCloud Air Dedicated Cloud or a Virtual Private Cloud subscription service and have configured networking using the basic networking features.

Procedure
1. Go to https://vca.vmware.com and log in to vCloud Air using your user name and password. The VMware vCloud Air services page appears.
2. Click the **My Subscriptions** tile. The VMware vCloud Air Dashboard appears.
3. Click the **Gateways** tab and click the tile for the gateway you want to upgrade.
4. Click **Manage in vCloud Director**. vCloud Director opens in a new browser tab and the **Org VDC Networks** tab is displayed.
5. Click the **Edge Gateways** tab. The gateways located in the virtual data center appear.
6. Click the gateway that you want to upgrade, right click, and select **Convert to Advanced Networking**. The Convert to advanced networking dialog box appears. The dialog box provides information about upgrading to the new APIs for Advanced Networking Services.

Note If the option **Convert to Advanced Networking** is unavailable, the edge gateway has already been upgraded or you do not have a license for this operation.
7. Click **Yes** to proceed with the upgrade.

The upgrade can take a few minutes to finish in vCloud Director.

Before you upgrade an edge gateway, the vCloud Air Web UI has the following functionality available for you to configure these basic networking functions:
After you upgrade an edge gateway, the networking functionality available in the vCloud Air Web UI changes.

After an upgrade, the tabs for configuring NAT and firewall rules are moved to the vCloud Director Web UI to match the NSX user experience. Click Manage in vCloud Director to navigate to the Advanced Networking Services UI where you configure those functions (and others) for your vCloud Air environment.

vCloud Air maintains your existing, pre-upgrade network configuration after the upgrade.

Log In and Navigate to Advanced Networking Services

You access the Advanced Networking Services Web UI on a per edge gateway basis. After you upgrade an edge gateway to Advanced Networking Services, you have access to all the advanced networking features for that edge gateway.

You can still use the VMware vCloud Air Web UI to configure basic networking features for your VMware vCloud Air environment, such as creating networks, assigning virtual machines to networks, and allocating IP addresses to your edge gateways. See the vCloud Air Networking Guide for information about using the basic network features.

Prerequisites

To access Advanced Networking Services for an edge gateway, you must meet these prerequisites:

- Have upgraded the edge gateway that you want to access to Advanced Networking Services. See “Upgrade an Edge Gateway To Advanced Networking Services,” on page 7 for information.
Procedure

1. Go to https://vca.vmware.com and log in to vCloud Air using your user name and password.

 If you are logging in to vCloud Air for the first time, see Sign In to vCloud Air in the vCloud Air User’s Guide for information.

 The VMware vCloud Air services page appears.

2. Click the My Subscriptions tile.

 The VMware vCloud Air Dashboard appears.

3. Click the Gateways tab and click the tile for the gateway you want to manage.

4. Click Manage in vCloud Director.

 vCloud Director opens in a new browser tab and the Org VDC Networks tab is displayed.

5. Click the Edge Gateways tab.

 The gateways located in the virtual data center appear.

6. Select the gateway, right click and select Edge Gateway Services.

 VMware vCloud Edge Gateway Services appears in a new browser tab. By default, the Dashboard tab is selected.

 ![Image of VMware vCloud Edge Gateway Services](image)

 Note If the edge gateway has not been upgraded, selecting Edge Gateway Services displays the vCloud Director edge gateway UI. Additionally, when you right click and display the edge gateway menu, you see that the option Convert to Advanced Networking is available, indicating that the edge gateway has not been upgraded to Advanced Networking Services.

7. Select a tab to configure that advanced networking feature.

8. To access the Trust Group feature, navigate to the virtual data center and manage the firewall settings. See “Add a Trust Groups Firewall Rule,” on page 35 for information.

 Note Advanced Networking Services includes two types of firewalls—the edge gateway firewall and the firewall to establish Trust Groups (referred to as a distributed firewall in the Advanced Networking Services Web UI). Configuring the edge gateway firewall is available for both Dedicated Cloud and Virtual Private Cloud subscription services. However, configuring the firewall to establish Trust Groups is possible only when you have the vCloud Air Dedicated Cloud subscription service.
Statistics and Logs for Advanced Networking Services

You can view statistics and access logs for the edge gateways deployed for Advanced Networking Services.

Statistics

Navigate to an edge gateway in vCloud Director, right click and select **Edge Gateway Services**. VMware vCloud Edge Gateway Services appears in a new browser tab. By default the **Dashboard** tab is selected. Statistics and status information are accessible from the following areas of Advanced Networking Services:

- Dashboard
- SSL VPN-Plus
- IPsec VPN
- Firewall Rules – Edge Gateway and Trust Groups

Note Advanced Networking Services includes two types of firewalls—the edge gateway firewall and the firewall to establish Trust Groups (referred to as a distributed firewall in the Advanced Networking Services Web UI). Configuring the edge gateway firewall is available for both Dedicated Cloud and Virtual Private Cloud subscription services. However, configuring the firewall to establish Trust Groups is possible only when you have the vCloud Air Dedicated Cloud subscription service.

Dashboard

The Dashboard provides operational visibility for Advanced Networking Services. The Dashboard displays graphs for the traffic flowing through the interfaces of the selected edge gateway and connection statistics for the firewall and load balancer services.

Note For additional statistics and historical data, you can configure vRealize Operations to query more advanced data and historical metrics.

Select the period for which you want to view the statistics.

SSL VPN-Plus Dashboard

The dashboard displays the status of the service, number of active SSL VPN sessions, and session statistics and data flow details. Click **Details** next to Number of Active Sessions to view information about the concurrent connections to private networks behind the edge gateway.
Figure 1-3. Statistics on the SSL VPN-Plus Dashboard

IPsec VPN

Click the IPSEC VPN tab > Show IPsec Statistics to display the status of the tunnel.

Firewall Rules

You can view statistics for edge gateway firewall rules in the following way:

1. Navigate to a Firewall tab:
 - For an edge gateway firewall, see “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
 - For a firewall for Trust Groups, see “Add a Trust Groups Firewall Rule,” on page 35 for information.
2. On the Firewall tab, click the (column display icon) and select the Stats check box. The page refreshes and the Stats column appears in the table.

3. Click the (the stats icon) for a rule.

Figure 1-4. Statistics for an Edge Gateway Firewall Rule

You can view the traffic related to the rule—traffic packets and size.

Figure 1-5. Statistics for a Trust Group Firewall Rule

Logs

You can enable logging an edge gateway for all the major features in Advanced Networking Services:

Table 1-1. How To Enable Logging Per Feature

<table>
<thead>
<tr>
<th>Navigation for Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall tab > Action cell of a rule and click > Log option</td>
<td>Logs all sessions matching this rule.</td>
</tr>
<tr>
<td>DHCP > DHCP Service Status > Enable logging check box</td>
<td>Logs the address translation.</td>
</tr>
<tr>
<td>NAT > Add () icon > Add DNAT Rule or Add SNAT Rule > Enable logging check box</td>
<td>Logs the traffic flow between the local subnet and peer subnet.</td>
</tr>
<tr>
<td>Routing tab > Global Configuration > Dynamic Routing Configuration > Edit > Enable Logging check box</td>
<td>Logs the traffic flow between the local subnet and peer subnet.</td>
</tr>
<tr>
<td>Load Balancer tab > Global Configuration > Edit > Logging check box</td>
<td>Logs the traffic flow between the local subnet and peer subnet.</td>
</tr>
<tr>
<td>IPSEC VPN tab > Logging Policy section > Enable logging check box</td>
<td>Maintains a log of the traffic passing through the SSL VPN gateway.</td>
</tr>
<tr>
<td>SSL VPN-Plus tab > Server Settings > Logging Policy > Change > Enable logging check box</td>
<td>Maintains a log of the traffic passing through the SSL VPN gateway.</td>
</tr>
</tbody>
</table>

Collecting log data is a multi-step process:

1. Enable logging for the features for which you need log data as described in the table above.
2 Configure a syslog server to receive the log data. See Capturing vCloud Air Edge Gateway Data with Syslog in the VMware vCloud Blog.

 The logged data is accessible via your configured syslog server.
You can specify static and dynamic routing for each edge gateway in vCloud Air.

To enable dynamic routing, you can configure an edge gateway using the Border Gateway Protocol (BGP) or the Open Shortest Path First (OSPF) protocol.

This chapter includes the following topics:
- “Specify Global Configuration,” on page 15
- “Add a Static Route,” on page 16
- “Configure BGP,” on page 17
- “Configure OSPF,” on page 18
- “Configure Route Redistribution,” on page 20

Specify Global Configuration

You can configure the default edge gateway for static routes and specify dynamic routing details for an edge gateway.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Routing** tab and **Global Configuration**.

3. To enable Equal-cost multi-path routing (ECMP), click **Enable** next to **ECMP**.

 ECMP is a routing strategy that allows next-hop packet forwarding to a single destination can occur over multiple best paths. These best paths can be added statically or as a result of metric calculations by dynamic routing protocols like OSPF or BGP. Multiple paths for static routes can be added by providing multiple next hops separated by commas in the Static Routes dialog box. See “Add a Static Route,” on page 16 for information.

The edge gateway utilizes Linux network stack implementation, a roundrobin algorithm with a randomness component. After a next hop is selected for a particular source and destination IP address pair, the route cache stores the selected next hop. All packets for that flow go to the selected next hop. The default IPv4 route cache timeout is 300 seconds (gc_timeout). When an entry is inactive for this time, it is eligible to be removed from the route cache. The actual removal happens when the garbage collection timer activates (gc_interval = 60 seconds).
4. To specify the default gateway, click **Edit** next to **Default Gateway**.
 a. Select an interface from which the next hop towards the destination network can be reached.
 b. Type the gateway IP address if required.
 c. Edit the MTU if required and type a description.
 d. Click **Save**.

5. To configure dynamic routing, click **Edit** next to **Dynamic Routing Configuration**.

 Note If you have IPsec VPN configured in your environment, you should not use dynamic routing.
 a. Select the router ID.
 The Router ID list displays the first uplink IP address of the edge gateway that pushes routes to the kernel for dynamic routing.
 b. Select **Enable Logging** to save logging information and select the log level.
 c. Click **OK**.

6. Click **Publish Changes**.

What to do next

To delete routing configuration, click **Reset**. This deletes all routing configurations (default, static, OSPF, and BGP configurations, as well as route redistribution).

Configure dynamic routing. See the following topics:

- “Configure BGP,” on page 17
- “Configure OSPF,” on page 18

Add a Static Route

You can add a static route for a destination subnet or host.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Routing** tab and **Static Routes**.

3. Click the **Add** (➕) icon.
 The Add Static Route dialog box appears.

4. Configure the following options for the static route:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Type the Network in CIDR notation.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Type the IP address of the Next Hop. The router must be able to directly reach the next hop. When ECMP is enabled, you can type multiple next hops. See “Specify Global Configuration,” on page 15 for information.</td>
</tr>
<tr>
<td>Interface</td>
<td>Select the interface on which you want to add a static route.</td>
</tr>
</tbody>
</table>
Configure BGP

You can configure Border Gateway Protocol for vCloud Air to exchange routes between your on-premises border devices and vCloud Air. BGP makes core routing decisions by using a table of IP networks or prefixes, which designate network reachability among multiple autonomous systems.

The BGP border devices established a connection before any routing information is exchanged. After establishing the connection, the border devices exchange routes and synchronize their tables. Each border device sends keepalive messages to keep this relationship alive.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Routing** tab and **BGP**.

3. In **BGP Configuration**, complete the BGP options:

 a. Click **Edit** next to **BGP Configuration**.

 b. Click **Enable BGP**.

 c. For packet forwarding to be uninterrupted during restart of BGP services, select **Enable Graceful Restart**.

 d. To allow the edge gateway to advertise itself as a default gateway to its peers, select **Enable Default Originate**.

 e. Type a value (a globally unique number between 1-65534) for the **Local AS**.

 vCloud Air assigns the local autonomous system (AS) number to the edge gateway you are configuring and advertises the local AS when the edge gateway peers with routers in other autonomous systems. The path of ASs that a route traverses is used as one metric when selecting the best path to a destination.

 f. Click **OK**.

4. In **Neighbors**, configure the routing neighbors:

 a. Click the Add (➕) icon.

 b. Type the IP address of your on-premises border device that vCloud Air connect to.

 c. Type a value (a globally unique number between 1-65534) for the **Remote AS**.

 vCloud Air assigns the remote AS number to the border device you are creating the connection for.
d If necessary, edit the default weight for the neighbor connection.

e If necessary, edit the default interval for the **Keep Alive Time**.

f If necessary, edit the default interval for the **Hold Down Time**.

The edge gateway uses the standard, default values for the keep alive timer (60 seconds) and the hold down timer. The default value for the hold down timer is $3 \times \text{keepalive}$ or 180 seconds. Once peering between two neighbors is achieved, the edge gateway starts a hold down timer. Every keep alive message it receives from the neighbor resets the hold down timer to 0. If the edge gateway fails to receive three consecutive keep alive messages, so that the hold down timer reaches 180 seconds, the edge gateway considers the neighbor down and deletes the routes from this neighbor.

g In **Password**, type the authentication password.

Each segment sent on the connection between the neighbors is verified. MD5 authentication must be configured with the same password on both BGP neighbors, otherwise, the connection between them will not be made.

To specify route filtering from a neighbor using an prefix list, click the **Add** icon in the **BGP Filters** area and configure the following options:

> **Caution** A "block all" rule is enforced at the end of the filters.

a Select the direction to indicate whether you are filtering traffic to or from the neighbor.

b Select the action to indicate whether you are allowing or denying traffic.

c Type the network in CIDR format that you want to filter to or from the neighbor.

d Type the IP prefixes that are to be filtered and click **OK**.

6 Click **Publish Changes**.

What to do next

Add a firewall rule that allows traffic to and from the remote border device in your on-premises data center. See “Add an Edge Gateway Firewall Rule,” on page 31 for information.

Configure BGP in your on-premises data center for the remote border device that vCloud Air is connecting to using the AS values and password you set in vCloud Air. These values must match on both sides of the connection.

Configure OSPF

The edge gateway supports OSPF, an interior gateway protocol that routes IP packets only within a single routing domain. Configure OSPF in vCloud Air to exchange routing information between edge gateways in vCloud Air.

Use OSPF to gather link state information from available routers and construct a topology map of the network. The topology determines the routing table presented to the Internet layer, which makes routing decisions based on the destination IP address found in IP packets.

OSPF routing policies provide a dynamic process of traffic load balancing between routes of equal cost. An OSPF network is divided into routing areas to optimize traffic flow and limit the size of routing tables. An area is a logical collection of OSPF networks, routers, and links that have the same area identification. Areas are identified by an Area ID.

Prerequisites

A Router ID must have been selected. “Specify Global Configuration,” on page 15
Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Routing** tab and **OSPF**.

3. In **OSPF Configuration**, complete the OSPF options:
 a. Click *Edit* next to **OSPF Configuration**.
 b. Select *Enable OSPF*.
 c. For packet forwarding to be uninterrupted during restart of OSPF services, select *Enable Graceful Restart*.
 d. To allow the edge gateway to advertise itself as a default gateway to its peers, select *Enable Default Originate*.
 e. Click *OK*.

4. In **Area Definitions**, configure the OSPF areas:
 a. Delete the not-so-stubby area (NSSA) 51 that is configured by default.
 b. Click the *Add* (➕) icon.
 c. Type an area ID.
 The edge gateway supports an area ID in the form of an IP address or decimal number.
 d. In **Type**, select *Normal* or *NSSA*.
 NSSAs prevent the flooding of AS-external link-state advertisements (LSAs) into NSSAs. They rely on default routing to external destinations. Hence, NSSAs must be placed at the edge of an OSPF routing domain. NSSA can import external routes into the OSPF routing domain, thereby providing transit service to small routing domains that are not part of the OSPF routing domain.
 e. In **Authentication**, select **Password** or **MD5** and type the password or MD5 key, respectively, for the value.
 - **Password**: In this method of authentication, a password is included in the transmitted packet.
 - **MD5**: This authentication method uses MD5 (Message Digest type 5) encryption. An MD5 checksum is included in the transmitted packet.

5. In **Area to Interface Mapping**, map interfaces to areas by completing the following steps:
 a. In **Area Definitions**, click the *Add* (➕) icon.
 b. From the **vNIC** drop-down list, select the interface that you want to map to the OSPF area. The interface specifies the external network that both edge gateways are connected to.
 c. Type an Area ID. The edge gateway supports an area ID in the form of an IP address or decimal number.
d. (Optional) Select **Ignore Interface MTU Settings** to disable MTU mismatch detection on received Database Descriptor (DBD) packets.

When configuring OSPF, routers connected to the same shared subnet should have the same MTU setting. However, you can force OSPF neighbors to establish a session even when their interface MTU settings do not match. Use caution when selecting this setting because it can lead to packet drops and cause the adjacency to reset repeatedly.

e. (Optional) Expand the **Advanced** section and complete the following options.

Note: vCloud Air provides a default value for each option. You can accept these default values or edit them for your environment.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello Interval</td>
<td>Specifies the default interval between hello packets that are sent on the interface.</td>
</tr>
<tr>
<td>Dead Interval</td>
<td>Specifies the default interval during which at least one hello packet must be received from a neighbor before the router declares that neighbor down.</td>
</tr>
<tr>
<td>Priority</td>
<td>Specifies the default priority of the interface. The interface with the highest priority is the designated router.</td>
</tr>
<tr>
<td>Cost</td>
<td>Specifies the default overhead required to send packets across that interface. The cost of an interface is inversely proportional to the bandwidth of that interface. The larger the bandwidth, the smaller the cost.</td>
</tr>
</tbody>
</table>

6. Click **Publish Changes**.

What to do next

Add a firewall rule that allows traffic between the edge gateways in vCloud Air that you are configuring OSPF routing for. See “Add an Edge Gateway Firewall Rule,” on page 31 for information.

Configure OSPF on the other edge gateways in vCloud Air that you want to exchange routing information with.

Configure Route Redistribution

By default, routers share routes with other routers running the same protocol. In a multi-protocol environment, you must configure route redistribution for cross-protocol route sharing.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Routing** tab and **Route Redistribution**.

3. Click **Edit** next to **Route Redistribution Status**.

4. Select the protocols for which you want to enable route redistribution and click **OK**.

5. To add an IP prefix, perform the following steps:

 a. Click the **Add** icon in **IP Prefixes**.

 b. Type a name and the IP address of the network.

 c. Click **OK**.
To specify redistribution criteria for the IP prefix, complete the following steps:

a Click the Add (➕) icon in Route Redistribution table.
b In Learner Protocol, select the protocol that learns routes from other protocols.
c In Allow Learning from, select the types of networks from which routes can be learned.
d In Action, select whether to permit or deny redistribution from the selected types of networks.
e Click OK.

Click Publish Changes.
Certificate and Security Group Management

Advanced Networking Services provides functionality to manage certificates for use with SSL VPN-Plus and IPsec VPN tunnels.

Additionally, Advanced Networking Services enables use of grouping objects for use in creating firewall rules and load balancer server pools.

This chapter includes the following topics:

- “Certificate Management in vCloud Air,” on page 23
- “Security Objects in vCloud Air,” on page 26

Certificate Management in vCloud Air

The edge gateway in vCloud Air supports self-signed certificates, certificates signed by a Certification Authority (CA), and certificates generated and signed by a CA.

About Using Certificates with vCloud Air

In Advanced Networking Services, you can manage certificates for the following vCloud Air features:

- IPsec VPN tunnels from your on-premises data center to vCloud Air
- SSL VPN-Plus connections to private networks and web resources deployed in vCloud Air
- The virtual servers and pools servers configured for load balancing in vCloud Air

How to Use Client Certificates

You can create a client certificate through a CAI command or REST call. You can then distribute this certificate to your remote users, who can install the certificate on their web browser.

The main benefit of implementing client certificates is that a reference client certificate for each remote user can be stored and checked against the client certificate presented by the remote user. To prevent future connections from a certain user, you can delete the reference certificate from the security server’s list of client certificates. Deleting the certificate denies connections from that user.

Generate a Certificate Signing Request

Before you can order a signed certificate from a CA or create a self-signed certificate, you must generate a Certificate Signing Request (CSR) for your edge gateway.

A CSR is an encoded file that you need to generate on an edge gateway that needs an SSL certificate. Using a CSR standardizes the way that companies send their public keys along with information that identifies their company names and domain names.
You generate a CSR with a matching private-key file that must remain on the edge gateway. The CSR contains the matching public key and other information such as your organization's name, location, and domain name.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the Certificates tab and Actions > Generate CSR. The Generate CSR dialog box appears.

3. Configure the following options for the CSR:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Type the fully-qualified domain name (FQDN) for the organization that you will be using the certificate for (for example, www.exampledomain.com). Do not include the http:// or https:// prefixes in your common name.</td>
</tr>
<tr>
<td>Organization Name</td>
<td>Type name under which your company is legally registered. The listed organization must be the legal registrant of the domain name in the certificate request.</td>
</tr>
<tr>
<td>Organization Unit</td>
<td>Use this field to differentiate between divisions within a company; for example, AMEA or East Coast Operations. If applicable, you can enter the DBA (doing business as) name in this field.</td>
</tr>
<tr>
<td>Locality</td>
<td>Type the city or locality where your company is legally registered.</td>
</tr>
<tr>
<td>State</td>
<td>Type the full name (do not abbreviate) of the state, province, region, or territory where your company is legally registered.</td>
</tr>
<tr>
<td>Country</td>
<td>Select the country where your company is legally registered. The drop-down menu displays country names along with their two-letter International Organization for Standardization (ISO-) format country codes.</td>
</tr>
<tr>
<td>Message Algorithm</td>
<td>(Optional) Select the key type (typically RSA) for the certificate. The key type defines the encryption algorithm for communication between the hosts. Note SSL VPN-Plus supports RSA certificates only.</td>
</tr>
<tr>
<td>Key Size</td>
<td>(Optional) Type the key size (2048 bit minimum).</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Enter a description for the certificate.</td>
</tr>
</tbody>
</table>

4. Click **OK**. The CSR is generated and displayed in the certificates list.

What to do next

Transmit the CSR to a certificate authority to obtain your signed certificate. Import the signed certificate into Advanced Networking Services. See “Add a Certificate,” on page 25 for information.

Configure a CA Signed Certificate

Before you can order an SSL certificate from a CA, you must generate a CSR for your edge gateway.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2 Generate a CSR. See “Generate a Certificate Signing Request,” on page 23 for information.
 The CSR is generated and displayed in the certificates list.
3 Have an online CA sign this CSR.
4 Import the signed certificate by performing the following steps:
 a From the Certificates tab, select Actions > Import Certificate.
 b In the Import Certificate dialog box, paste the contents of the signed certificate.
 c Click OK.
 The CA signed certificate appears in the certificates list.

What to do next
Attach the CA signed certificate to the SSL VPN-Plus or IPsec VPN tunnels as required. See “Configure Server Settings,” on page 53 and “Specify Global IPsec VPN Configuration,” on page 64 for information.

Configure a Self-Signed Certificate
You can create, install, and manage self-signed server certificates.

Prerequisites
Verify that you have a CA certificate so that you can sign your own certificates.

Procedure
1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2 Generate a CSR. See “Generate a Certificate Signing Request,” on page 23 for information.
 The CSR is generated and displayed in the certificates list.
3 Select the CSR in the list and select Actions > Self Sign Certificate.
4 Type the number of days that the self-signed certificate is valid for.
5 Click OK.

Add a Certificate
By adding a CA certificate, you can become an interim CA for your company. You then have the authority for signing your own certificates.

Procedure
1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See "Log In and Navigate to Advanced Networking Services," on page 9 for information.
2 Click the Certificates tab.
3 Click the Add (+
) icon and select one of the following options:
 • Certificate
 • CA Certificate
4 Paste the certificate contents in the Certificate contents text box.
5 (Optional) Type a description for the certificate.
6 If you are adding a Certificate, configure the following options:
 - **Private Key**—required for enabling public key/private key encryption
 - **Password**
 - **Retype Password**

7 Click **OK**.
 You can now sign your own certificates.

Add a Certificate Revocation List

A Certificate Revocation List (CRL) is a list of subscribers and their status, which is provided and signed by Microsoft.

The list contains the following items:
- The revoked certificates and the reasons for revocation
- The dates that the certificates are issued
- The entities that issued the certificates
- A proposed date for the next release

When a potential user attempts to access a server, the server allows or denies access based on the CRL entry for that particular user.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Certificates** tab.

3. Click the **Add** (➕) icon and then **CLR**.
 The Add CRL dialog box appears.

4. In **Certificate contents**, paste the list.

5. (Optional) Type a description.

6. Click **OK**.

Security Objects in vCloud Air

This section describes custom network and security containers.

Advanced Networking Services includes functionality to create grouping objects for use when configuring the edge gateway firewall or the firewall for Trust Groups. Additionally, you can use grouping objects when configuring the server pool for the load balancer.

Note Editing or adding rules for the Trust Groups firewall is possible only when you have the vCloud Air Dedicated Cloud subscription service.
Create an IP Address Group

You can create an IP address group and then add this group as the source or destination in a firewall rule. Such a rule can help protect physical machines from virtual machines or vice versa.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the Grouping Objects tab and IP Sets.

3. Click the Add (＋) icon.

 The Add IP Addresses dialog box appears.

4. Type a name for the group.

5. (Optional) Type a description for the group.

6. Type the IP addresses to be included in the group.

7. Click OK.

Create a Service

You can create a service and then define rules for that service.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the Grouping Objects tab and Service.

3. Click the Add (＋) icon.

4. Type a name for the service.

5. (Optional) Type a description for the service.

6. Select a protocol for which you want to add a non-standard port.

Create a Service Group

You can create a service group and then define rules for that service group.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the Grouping Objects tab and Service Group.

3. Click the Add (＋) icon.

 The Add service group dialog box appears.

4. Type a name for the group.

5. (Optional) Type a description for the group.

6. In Members, select the services or service groups that you want to add to the group.
7 Click **OK**.
Network Security and Isolation

Advanced Networking Services provides functionality to create robust firewalls to protect your virtual machines deployed in vCloud Air from outside network traffic as well as to create internal firewalls to isolate virtual machines from each other.

This chapter includes the following topics:

- “Types of Firewalls in vCloud Air,” on page 29
- “Manage Edge Gateway Firewall Rules,” on page 31
- “Manage Trust Groups Firewall Rules,” on page 35

Types of Firewalls in vCloud Air

You can create firewall rules to establish Trust Groups and firewall rules to apply to an edge gateway to protect your virtual machines from outside network traffic.

Note Advanced Networking Services includes two types of firewalls—the edge gateway firewall and the firewall to establish Trust Groups (referred to as a distributed firewall in the Advanced Networking Services Web UI). Configuring the edge gateway firewall is available for both Dedicated Cloud and Virtual Private Cloud subscription services. However, configuring the firewall to establish Trust Groups is possible only when you have the vCloud Air Dedicated Cloud subscription service.

Edge Gateway Firewalls Versus Trust Group Firewalls

An edge gateway firewall monitors North-South traffic to provide perimeter security functionality including firewall, Network Address Translation (NAT) as well as site-to-site IPSec and SSL VPN functionality.

Trust Groups, implemented through stateful distributed firewalls, isolate and secure each virtual machine and application down to the Layer 2 level. Configuring Trust Groups effectively quarantines any external or internal network security compromise, isolating East-West traffic between virtual machines on the same network segment. Security policies are centrally managed, inheritable, and nestable, so networking and security administrators can manage them at scale. Additionally, once deployed, defined security policies follow the virtual machines or applications when they move into vCloud Air.

About Firewall Rules

Rules defined on the centralized level are referred to as pre rules. Tenants can then add rules at an individual edge gateway level, which are referred to as local rules.
Each traffic session is checked against the top rule in the Firewall table before moving down the subsequent rules in the table. The first rule in the table that matches the traffic parameters is enforced. Rules are displayed in the following order:

1. User-defined pre rules have the highest priority, and are enforced in top-to-bottom ordering with a per-virtual NIC level precedence.
2. Auto-plumbed rules (rules that enable control traffic to flow for edge gateway services).
3. Local rules defined at an edge gateway level.
4. Default Trust Group firewall rule

Edge Gateway Firewall

The firewall for the edge gateway helps you meet key perimeter security requirements, such as building DMZs based on IP/VLAN constructs, tenant-to-tenant isolation in multi-tenant virtual data centers, Network Address Translation (NAT), partner (extranet) VPNs, and user-based SSL VPNs.

The Edge Gateway Firewall monitors North-South traffic to provide perimeter security functionality including firewall, Network Address Translation (NAT) as well as site-to-site IPSec and SSL VPN functionality. This solution is available in the virtual machine form factor and can be deployed in a High Availability mode.

Firewall for Trust Groups

The Trust Group firewall allows you to segment virtual data center entities like virtual machines based on virtual machine names and attributes.

The Trust Groups firewall is a hyper visor kernel-embedded firewall that provides visibility and control for virtualized workloads and networks. You can create access control policies based on objects like data centers and virtual machine names; and network constructs like IP addresses or IP set addresses. Firewall rules are enforced at the vNIC level of each virtual machine to provide consistent access control even when the virtual machine gets motioned. The hyper visor-embedded nature of the firewall delivers close to line rate throughput to enable higher workload consolidation on physical servers. The distributed nature of the firewall provides a scale-out architecture that automatically extends firewall capacity when additional hosts are added to a data center.

For L2 packets, the Trust Groups firewall creates a cache for performance boost. L3 packets are processed in the following sequence:

1. All packets are checked for an existing state. This is done for SANS too so that bogus or retransmitted SANS for existing sessions can be detected.
2. When a state match is found, the packets are processed.
3. When a state match is not found, the packets are processed through the rules until a match is found.
 - For TCP packets, a state is set only for packets with a SYN flag. However, rules that do not specify a protocol (service ANY), can match TCP packets with any combination of flags.
 - For UDP packets, 5-tuple details are extracted from the packet. When a state does not exist in the state table, a new state is created using the extracted 5-tuple details. Subsequently received packets are matched against the state that was just created.
 - For ICMP packets, ICMP type, code, and packet direction are used to create a state.

If you have a third-party vendor firewall solution deployed in your environment, see Redirecting Traffic to a Vendor Solution through Logical Firewall in the NSX Administration Guide.

Running open VMware Tools on guest or workload virtual machines has not been validated with the Trust Groups firewall.
Manage Edge Gateway Firewall Rules

You can navigate to an edge gateway to see the rules that apply to it.

Firewall rules applied to an edge gateway router only protect traffic to and from the router. They do not protect traffic traveling between virtual machines within a virtual data center. To protect intra-virtual data center traffic, create Trust Groups firewall rules for East-West protection.

Rules created on the firewall user interface applicable to an edge gateway are displayed in a read-only mode.

Rules are displayed and enforced in the following order:

1. User-defined rules from the Firewall user interface (Read Only).
2. Auto-plumbed rules (rules that enable control traffic to flow for edge gateway services).
3. User-defined rules on Firewall user interface.
4. Default rule.

Add an Edge Gateway Firewall Rule

The Firewall tab displays rules created on the centralized Firewall tab in a read-only mode. Any rules that you add here are not displayed on the centralized Firewall tab. You can add multiple edge gateway interfaces and IP address groups as the source and destination for firewall rules.

When you select vNIC Group and vse as an object for a source or destination, the rule applies to traffic generated by the edge gateway. When you select internal or external, the rule applies to traffic coming from any internal or uplink interface of the selected edge gateway instance.

Note: Edge gateway firewall rules on internal interfaces do not work when you configure dynamic routing for the edge gateway.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the Firewall tab.
3 Perform one of the following actions:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **To add a rule at a specific place in the firewall table** | a. Select a rule.
 b. In the No. column, click + and select **Add Above** or **Add Below**.
 A new any any allow rule is added below the selected rule. When the system defined rule is the only rule in the firewall table, the new rule is added above the default rule. |
| **To add a rule by copying a rule** | a. Select a rule.
 b. Click the **Copy** icon.
 c. Select a rule.
 d. In the No. column, click + and select **Paste Above** or **Paste Below**. |
| **To add a rule anywhere in the firewall table** | a. Click the **Add** icon.
 A new any any allow rule is added below the selected rule. When the system defined rule is the only rule in the firewall table, the new rule is added above the default rule.
 The new rule is enabled by default. |

4 Point to the **Name** cell of the new rule and click +. Enter a name for the rule.

5 Point to the **Source** cell of the new rule. Perform one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click </td>
<td>Type the source IP address. The firewall supports both IPv4 and IPv6 formats.</td>
</tr>
</tbody>
</table>
| Click ![all](image) | To specify the source as an object other than a specific IP address:
 a. Select one or more objects and click ![all](image).
 You can create a new IP Set. Once you create the new object, it is added to the source column by default.
 b. To exclude a source from the rule, click **Advance options**.
 c. Select **Negate Source** to exclude this source from the rule.
 When **Negate Source** is selected, the rule is applied to traffic coming from all sources except for the source you specified in the previous step.
 When **Negate Source** is not selected, the rule applies to traffic coming from the source you specified in the previous step.
 d. Click **OK**. |
6 Point to the Destination cell of the new rule. Perform one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click </td>
<td>Type the destination IP address. The firewall supports both IPv4 and IPv6 formats.</td>
</tr>
</tbody>
</table>
| Click ![+] | To specify the destination as an object other than a specific IP address:
 a Select one or more objects and click ![+]
 You can create a new IP Set. Once you create the new object, it is added to the Destination column by default.
 b To exclude a destination port, click Advance options.
 c Select Negate Destination to exclude this destination from the rule.
 When Negate Destination is selected, the rule is applied to traffic going to all destinations except for the destination you specified in the previous step.
 When Negate Destination is not selected, the rule applies to traffic going to the destination you specified in the previous step.
 d Click OK. |

7 Point to the Service cell of the new rule. Perform one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Click ![Port](image) | To specify the service as a port–protocol combination:
 a Select the service protocol.
 Note The edge gateway supports ALG for FTP only.
 b Under Advanced options, type the port number.
 c Click OK. |
| Click ![+] | To select a pre-defined service or service group, or define a new one:
 a Select one or more objects and click ![+]
 You can create a new service or service group. Once you create the new object, it is added to the Selected Objects column by default.
 b Click OK. |

In order to protect your network from ACK or SYN floods, you can set the service to TCP-all_ports or UDP-all_ports and set the action to Block for the default rule.

8 Point to the Action cell of the new rule and click ![+] Select the required actions and click OK.

<table>
<thead>
<tr>
<th>Action</th>
<th>Results in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept</td>
<td>Allows traffic from or to the specified sources, destinations, and services.</td>
</tr>
<tr>
<td>Deny</td>
<td>Blocks traffic from or to the specified sources, destinations, and services.</td>
</tr>
</tbody>
</table>
| Reject | Sends reject message for unaccepted packets.
 RST packets are sent for TCP connections.
 ICMP messages with administratively prohibited code are sent for UDP, ICMP, and other IP connections. |
| Log | Logs all sessions matching this rule. Enabling logging can affect performance. |
| Do not log | Does not log sessions. |
Action | Results in
--- | ---
Advanced options > Match on Translated | Applies the rule to the translated IP address and services for a NAT rule
Enable Rule Direction | Indicates whether the rule is incoming or outgoing.

Note VMware does not recommend specifying the direction for firewall rules.

9 Click **Publish**.

After a few moments, a message indicating whether the publish operation was successful appears. In case of any failures, the hosts on which the rule was not applied are listed. When you click **Publish**, the firewall configuration is automatically saved.

Edit an Edge Gateway Firewall Rule

You can edit and delete only the user-defined firewall rules that were added to an edge gateway. You cannot edit or delete an auto-generated rule or the default rule.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Firewall** tab.

 The table of configured rules for the edge gateway firewall appears.

 - Disable a rule by clicking ✅, or enable a rule by clicking ❌.
 - Edit a rule by clicking ✍.

 Note The default firewall rule for an edge gateway blocks all incoming traffic. You can change the default action and logging settings. Default firewall settings apply to traffic that does not match any of the user-defined firewall rules.

 - Delete a rule by clicking ✗.
 - Move a rule up or down in the Firewall table. See “Change the Order of a Gateway Firewall Rule,” on page 35.
 - Hide generated rules or pre rules (rules added on the centralized Firewall tab) by clicking **Hide Generated rules** or **Hide Pre rules**.
 - Search for rules by typing text in the Search field.
 - Display additional columns in the rule table by clicking ☰ and selecting the appropriate columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Information Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Tag</td>
<td>Unique system generated ID for each rule</td>
</tr>
<tr>
<td>Log</td>
<td>Whether traffic for this rule is being logged</td>
</tr>
<tr>
<td>Stats</td>
<td>Clicking shows the traffic related to this rule (traffic packets and size)</td>
</tr>
<tr>
<td>Comments</td>
<td>Comments for the rule</td>
</tr>
</tbody>
</table>

3 Click **Publish Changes**.
Change the Order of a Gateway Firewall Rule

You can move a custom rule up or down in the table. The default rule is always at the bottom of the table and cannot be moved.

Rules are displayed (and enforced) in the following order:

1 User-defined pre rules have the highest priority and are enforced in top-to-bottom ordering with a per-virtual NIC level precedence.
2 Auto-plumbed rules.
3 Local rules defined at an edge gateway level.
4 Default firewall rule for Trust Groups.

Procedure

1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2 In the Firewall tab, select the rule that you want to move.
3 Move a rule up or down in the Firewall table by clicking Move rule up (↑) or Move rule down (↓) icon.
4 Click Publish Changes.

Manage Trust Groups Firewall Rules

Default firewall settings apply to traffic that does not match any of the user-defined firewall rules. The default firewall rule for Trust Groups is displayed on the centralized firewall user interface, and the default rule for each edge gateway is displayed at the edge gateway level.

The default Trust Group rule allows all L3 and L2 traffic to pass through all prepared clusters in your infrastructure. The default rule is always at the bottom of the rules table and cannot be deleted or added to. However, you can change the Action element of the rule from Allow to Block or Reject, add comments for the rule, and indicate whether traffic for that rule should be logged.

Note Configuring the firewall to establish Trust Groups is possible only when you have the vCloud Air Dedicated Cloud subscription service.

Add a Trust Groups Firewall Rule

You add firewall rules at the global scope. Using the Applied To field, you can then narrow down the scope at which you want to apply the rule. The firewall allows you to add multiple objects at the source and destination levels for each rule, which helps reduce the total number of firewall rules to be added.

Prerequisites

Configuring the firewall to establish Trust Groups is possible only when you have the vCloud Air Dedicated Cloud subscription service.

Procedure

1 From the Dashboard tab in the vCloud Air Web UI, click the virtual data center to configure a Trust Groups firewall rule. The Virtual Data Center Details page appears.
2 Click the **Gateways tab > Manage in vCloud Director.**

vCloud Director opens in a new browser tab and displays the **Administration** page for the gateways in the selected virtual data center.

3 Under **Cloud Resources** in the left navigation panel, click **Virtual Datacenters.**

The page refreshes and displays the virtual data center in the table.

4 Select the virtual data center, right-click and select **Manage Firewall.**

The vCloud Security Services page appears.

5 Select the type of rule you want to create. You have the option to create a general rule or an Ethernet rule.

 To add an L3 rule, click the **General** tab. To add an L2 rule, click the **Ethernet** tab.

6 Expand the section where you want to add a rule.

 By default, the edge gateway is provisioned with the section **Default Section Layer3.**

7 To add a rule at a specific place in the firewall table, in the No. column, click [] and select **Add Above** or **Add Below.**

 A new any any allow rule is added above or below the selected rule. When the system defined rule is the only rule in the firewall table, the new rule is added above the default rule.

8 Point to the **Name** cell, click [] and enter a name.

9 Point to the **Source** cell and perform one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click ![]</td>
<td>Type the source IP address. The Trust Groups firewall supports IPv4 format only.</td>
</tr>
</tbody>
</table>
| **Click** ![] | To specify the source as an object other than a specific IP address:
 a Select one or more objects and click ![]
 You can create a new IP Set. Once you create the new object, it is added to the source column by default.
 b To exclude a source from the rule, click **Advance options.**
 c Select **Negate Source** to exclude this source from the rule.
 When **Negate Source** is selected, the rule is applied to traffic coming from all sources except for the source you specified in the previous step.
 When **Negate Source** is not selected, the rule applies to traffic coming from the source you specified in the previous step.
 d Click **OK.** |
10 Point to the **Destination** cell and perform one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click IP</td>
<td>Type the destination IP address. The Trust Groups firewall supports IPv4 format only.</td>
</tr>
</tbody>
</table>
| Click | To specify destination as an object other than a specific IP address:
 a. Select one or more objects and click .
 You can create a new IP Set. Once you create the new object, it is added to the Destination column by default.
 b. To exclude a destination port, click *Advance options*.
 c. Select **Negate Destination** to exclude this destination from the rule.
 When **Negate Destination** is selected, the rule is applied to traffic going to all destinations except for the destination you specified in the previous step.
 When **Negate Destination** is not selected, the rule applies to traffic going to the destination you specified in the previous step.
 d. Click **OK**. |

11 Point to the **Service** cell of the new rule and perform one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Click | To specify the service as a port–protocol combination:
 a. Select the service protocol.
 Note The Trust Groups firewall supports Application Level Gateway (ALG) for the following protocols: FTP, CIFS, ORACLE TNS, MS-RPC, and SUN-RPC.
 b. Type the port number and click **OK**. |
| Click | To select a pre-defined service or service group, or define a new one:
 a. Select one or more objects and click .
 You can create a new service or service group. Once you create the new object, it is added to the **Selected Objects** column by default.
 b. Click **OK**. |

Note To protect your network from ACK or SYN floods, set the service to TCP-all_ports or UDP-all_ports and set the action to Block for the default rule.

12 Point to the **Action** cell, click *+* to configure the action for the rule, and click **OK**.

<table>
<thead>
<tr>
<th>Action</th>
<th>Results in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept</td>
<td>Allows traffic from or to the specified sources, destinations, and services.</td>
</tr>
<tr>
<td>Deny</td>
<td>Blocks traffic from or to the specified sources, destinations, and services.</td>
</tr>
</tbody>
</table>
| Reject | Sends a reject message for unaccepted packets.
 RST packets are sent for TCP connections.
 ICMP messages with administratively prohibited codes are sent for UDP, ICMP, and other IP connections. |
| Log | Logs all sessions matching this rule. Enabling logging can affect performance. |
| Do not log | Does not log sessions. |
Action | Results in
--- | ---
Advanced options > Match on Translated | Applies the rule to the translated IP address and services for a NAT rule.
Enable Rule Direction | Indicates whether the rule is incoming or outgoing. VMware does not recommend specifying the direction for Trust Groups firewall rules.

13 Point to the **Applied To** cell, click + to define the scope at which this rule is applicable, then click **OK**.

<table>
<thead>
<tr>
<th>To apply a rule to</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>All edge gateways in your environment</td>
<td>Select Apply this rule on all Edge gateways. After you click OK, the Applied To column for this rule displays All Edges. When the option for all edge gateways in the virtual data center is selected, the Applied To column displays Any.</td>
</tr>
</tbody>
</table>
| One or more data centers, edge gateways, networks, or virtual machines | 1 In **Container type**, select the appropriate object. 2 In the **Available list**, select one or more objects and click |}

NOTE When the rule contains virtual machines in the source and destination fields, you must add both the source and destination virtual machines to **Applied To** for the rule to work correctly.

14 Click **Publish Changes**.

Edit a Trust Groups Firewall Rule

Firewall rules for Trust Groups are added to a virtual data center in vCloud Air.

You can edit and delete only the user-defined firewall rules that were added to a virtual data center. You cannot edit or delete an auto-generated rule or the default rule.

Prerequisites

Editing or adding rules for the Trust Groups firewall is possible only when you have the vCloud Air Dedicated Cloud subscription service.

Procedure

1 To edit a Trust Groups firewall rule, navigate to the virtual data center in vCloud Director where a Trust Groups firewall is configured.

See “Add a Trust Groups Firewall Rule,” on page 35 for information.

The table of configured Trust Groups firewall rules for the virtual data center appears.

2 Perform any of the following actions to manage the Trust Groups firewall rule:

- Disable a rule by clicking ✅, or enable a rule by clicking ✗.
- Edit a rule by clicking ✉️.
- Delete a rule by clicking ✗️.
Move a rule up or down in the Firewall table by clicking ▸ or ▼.

Note You can move a custom rule up or down in the table. The default rule is always at the bottom of the table and cannot be moved.

Search for rules by typing text in the Search field.

Display additional columns in the rule table by clicking ▸ and selecting the appropriate columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Information Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Tag</td>
<td>Unique system generated ID for each rule</td>
</tr>
<tr>
<td>Log</td>
<td>Whether traffic for this rule is being logged</td>
</tr>
<tr>
<td>Stats</td>
<td>Clicking ▶ shows the traffic related to this rule (traffic packets and size)</td>
</tr>
<tr>
<td>Comments</td>
<td>Comments for the rule</td>
</tr>
</tbody>
</table>

3. Click **Publish Changes**.
Load Balancing

The load balancer enables network traffic to follow multiple paths to a specific destination. It distributes incoming service requests evenly among multiple servers in such a way that the load distribution is transparent to users. Load balancing helps achieve optimal resource utilization, maximizing throughput, minimizing response time, and avoiding overload.

Set Up Load Balancing

The load balancer distributes network traffic across multiple servers to achieve optimal resource utilization.

You map an external, or public, IP address to a set of internal servers for load balancing. The load balancer accepts TCP, HTTP, or HTTPS requests on the external IP address and decides which internal server to use. The edge gateway provides load balancing up to Layer 7.

Setting up load balancing in vCloud Air consists of the following workflow:

1. You begin by setting global options for the load balancer.
2. You then create an application profile to define the behavior of a particular type of network traffic.
3. Next, you create a service monitor to define health check parameters for the load balancer.
4. You now create a server pool consisting of backend server members and associate a service monitor with the pool to manage and share the backend servers flexibly and efficiently.
 When the virtual server receives a request, it chooses the appropriate pool to distribute the traffic comprising one or more members based on the associated algorithm. Each pool is monitored by the associated service monitor. When the load balancer detects a problem with a pool member, it is marked as down.
5. Finally, create a firewall rule to permit traffic to the new virtual server (the destination IP address). See "Add an Edge Gateway Firewall Rule," on page 31 for information.

Port 8090 is the default listening port for TCP, port 80 is the default port for HTTP, and port 443 is the default port for HTTPS.

Load balancing for an edge gateway is configured on the external interface because the edge gateway load balances incoming traffic from the external network. When configuring the virtual server for load balancing, specify one of the available IP addresses you have in your vCloud Air service. See Allocation of Public IP Addresses in the vCloud Air Networking Guide.
Configure the Load Balancer Service

You can specify global load balancer configuration parameters.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Load Balancer** tab and **Global Configuration**.

3. Click **Edit** next to **Load balancer global configuration**.

4. Select the options you want to enable:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Load Balancer</td>
<td>Allows the load balancer to distribute traffic to internal servers for load balancing.</td>
</tr>
<tr>
<td>Acceleration Enabled</td>
<td>When enabled, the load balancer uses the faster L4 engine rather than L7 engine. The L4 TCP VIP is processed before the edge gateway firewall so no Allow firewall rule is required. L7 HTTP/HTTPS VIPs are processed after the firewall. Therefore, when Acceleration Enabled is not selected, an edge gateway firewall rule must exist to allow access to the L7 HTTP/HTTPS VIP. When Acceleration Enabled is selected and the server pool is in non-transparent mode, an SNAT rule is added. Therefore, ensure that the firewall is enabled on the edge gateway.</td>
</tr>
<tr>
<td>Logging</td>
<td>The edge gateway load balancer collects traffic logs. You can choose the log level.</td>
</tr>
</tbody>
</table>

5. Click **OK**.

What to do next

Configure application profiles for the load balancer. See “Create an Application Profile,” on page 42.

Create an Application Profile

You create an application profile to define the behavior of a particular type of network traffic. After configuring a profile, you associate the profile with a virtual server. The virtual server then processes traffic according to the values specified in the profile. Using profiles enhances your control over managing network traffic, and makes traffic-management tasks easier and more efficient.

When you create a profile for HTTPS traffic, the following HTTPS traffic patterns are allowed:

- Client -> HTTPS -> LB (terminate SSL) -> HTTP -> servers
- Client -> HTTPS -> LB (terminate SSL) -> HTTPS -> servers
- Client -> HTTPS-> LB (SSL passthrough) -> HTTPS -> servers
- Client -> HTTP-> LB -> HTTP -> servers

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Load Balancer** tab and **Application Profiles**.
3. Click the **Add (✚)** icon.

 The New Profile dialog box appears.

4. Type a name for the profile.

5. (Optional) Configure the following options for the application profile:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Select the way in which you want to send requests to the server—HTTP, HTTPS, TCP, or UDP. By default, HTTP is selected for the traffic type. Depending on the type selected, the remaining options in the New Profile dialog are enabled or disabled.</td>
</tr>
<tr>
<td>HTTP Redirect URL</td>
<td>(HTTP and HTTPS) Type the URL to which you want to re-direct HTTP traffic. For example, you can direct traffic from http://myweb.com to https://myweb.com.</td>
</tr>
<tr>
<td>Persistence</td>
<td>Specify persistence for the profile. Persistence tracks and stores session data, such as the specific pool member that serviced a client request. This ensures that client requests are directed to the same pool member throughout the life of a session or during subsequent sessions. Note: The persistence options refresh depending on the type selected. SOURCEIP persistence tracks sessions based on the source IP address. When a client requests a connection to a virtual server that supports source address affinity persistence, the load balancer checks to see if that client previously connected, and if so, returns the client to the same pool member. (TPC Only) Microsoft Remote Desktop Protocol (MSRDP) persistence maintains persistent sessions between Windows clients and servers that are running the Microsoft Remote Desktop Protocol (RDP) service. The recommended scenario for enabling MSRDP persistence is to create a load balancing pool that consists of members running Windows Server 2003 or Windows Server 2008, where all members belong to a Windows cluster and participate in a Windows session directory.</td>
</tr>
<tr>
<td>Cookie Name</td>
<td>(HTTP and HTTPS) Type the cookie name. Cookie persistence inserts a cookie to uniquely identify the session the first time a client accessed the site and then refers to that cookie in subsequent requests to persist the connection to the appropriate server. Note: A cookie name is required when you select cookie persistence.</td>
</tr>
</tbody>
</table>
Option Description

Mode
Select the mode by which the cookie should be inserted. The following cookie insertion modes are supported:

- **Insert**

 The edge gateway sends a cookie. When the server sends one or more cookies, the client will receive one extra cookie (the server cookies plus the edge gateway cookie). When the server does not send any cookies, the client will receive the edge gateway cookie only.

- **Prefix**

 Select this option when your client does not support more than one cookie.

 Note All browsers accept multiple cookies. But you might have a proprietary application using a proprietary client that supports only one cookie. The Web server sends its cookie as usual. The edge gateway injects (as a prefix) its cookie information in the server cookie value. This cookie added information is removed when the edge gateway sends it to the server.

- **App Session**

 For this option, the server does not send a cookie; instead, it sends the user session information as a URL. For example, `http://mysite.com/admin/UpdateUserServlet;jsessionid=OI2489A507853D`, where `jsessionid` is the user session information and is used for the persistence. It is not possible to see the App Session persistence table for troubleshooting.

Expires in
Enter a length of time in seconds that persistence stays in effect.

Insert X-Forwarded-For HTTP header
(HTTPS and HTTP) Select Insert X-Forwarded-For HTTP header for identifying the originating IP address of a client connecting to a Web server through the load balancer.

Enable Pool Side SSL
(HTTPS Only) Select Enable Pool Side SSL to define the certificate, CAs, or CRLs used to authenticate the load balancer from the server side in the Pool Certificates tab.

6 (HTTPS Only) Configure the certificates to be used with the application profile:

Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Server Certificates</td>
<td>Select the certificate, CAs, or CRLs used to decrypt HTTPS traffic.</td>
</tr>
<tr>
<td>Pool Certificates</td>
<td>Define the certificate, CAs, or CRLs used to authenticate the load balancer from the server side.</td>
</tr>
<tr>
<td></td>
<td>Note Select Enable Pool Side SSL to enable this tab.</td>
</tr>
<tr>
<td>Cipher</td>
<td>Select the cipher algorithms (or cipher suite) negotiated during the SSL/TLS handshake.</td>
</tr>
<tr>
<td>Client Authentication</td>
<td>Specify whether client authentication is to be ignored or required.</td>
</tr>
<tr>
<td></td>
<td>Note When set to required, the client must provide a certificate after the request or the handshake is canceled.</td>
</tr>
</tbody>
</table>

What to do next

Add service monitors for the load balancer to define health checks for different types of network traffic. See “Create a Service Monitor,” on page 45.
Create a Service Monitor

You create a service monitor to define health check parameters for a particular type of network traffic. When you associate a service monitor with a pool, the pool members are monitored according to the service monitor parameters.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the Load Balancer tab and Service Monitoring.

3. Click the Add (+) icon. The New Service Monitor dialog box appears.

4. Type a name for the service monitor.

5. (Optional) Configure the following options for the service monitor:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td>Type the interval at which a server is to be pinged.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Type the maximum time in seconds within which a response from the server must be received.</td>
</tr>
<tr>
<td>Max Retries</td>
<td>Type the number of times the server must be pinged before it is declared down.</td>
</tr>
<tr>
<td>Type</td>
<td>Select the way in which you want to send the health check request to the server—HTTP, HTTPS, TCP, ICMP, or UDP. Depending on the type selected, the remaining options in the New Service Monitor dialog are enabled or disabled.</td>
</tr>
<tr>
<td>Expected</td>
<td>(HTTP and HTTPS only) Type the string that the monitor expects to match in the status line of the HTTP or HTTPS response (for example, HTTP/1.1).</td>
</tr>
<tr>
<td>Method</td>
<td>(HTTP and HTTPS only) Select the method to be used to detect server status.</td>
</tr>
<tr>
<td>URL</td>
<td>(HTTP and HTTPS only) Type the URL to be used in the sample request. Note When you select the POST method, you must specify a URL.</td>
</tr>
<tr>
<td>Send</td>
<td>(HTTP, HTTPS, and UDP only) Type the data to be sent.</td>
</tr>
<tr>
<td>Receive</td>
<td>(HTTP, HTTPS, and UDP only) Type the string to be matched in the response content. Note When Expected is not matched, the monitor does not try to match the Receive content.</td>
</tr>
</tbody>
</table>
| Extension | (ALL) Type advanced monitor parameters as key=value pairs. For example, warning=10 indicates that when a server does not respond within 10 seconds, its status is set as warning. All extension items should be separated with a carriage return character. For example: `<extension>delay=2
critical=3
escape</extension>` |

6. Click OK.
Example: Extensions Supported for Each Protocol

Table 5-1. Extensions for HTTP/HTTPS Protocols

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-body</td>
<td>Does not wait for a document body and stops reading after the HTTP/HTTPS header. Note: An HTTP GET or HTTP POST is still sent; not a HEAD method.</td>
</tr>
<tr>
<td>max-age=SECONDS</td>
<td>Warns when a document is more than SECONDS old. The number can be in the form 10m for minutes, 10h for hours, or 10d for days.</td>
</tr>
<tr>
<td>content-type=STRING</td>
<td>Specifies a Content-Type header media type in POST calls.</td>
</tr>
<tr>
<td>linespan</td>
<td>Allows regex to span newlines (must precede -r or -R).</td>
</tr>
<tr>
<td>regex=STRING or ereg=STRING</td>
<td>Searches the page for regex STRING.</td>
</tr>
<tr>
<td>eregi=STRING</td>
<td>Searches the page for case-insensitive regex STRING.</td>
</tr>
<tr>
<td>invert-regex</td>
<td>Returns CRITICAL when found and OK when not found.</td>
</tr>
<tr>
<td>proxy-authorization=AUTH_PAIR</td>
<td>Specifies the username:password on proxy servers with basic authentication.</td>
</tr>
<tr>
<td>useragent=STRING</td>
<td>Sends the string in the HTTP header as User Agent.</td>
</tr>
<tr>
<td>header=STRING</td>
<td>Sends any other tags in the HTTP header. Use multiple times for additional headers.</td>
</tr>
<tr>
<td>onredirect=ok</td>
<td>warning</td>
</tr>
<tr>
<td>pagesize=INTEGER:INTEGER</td>
<td>Specifies the minimum and maximum page sizes required in bytes.</td>
</tr>
<tr>
<td>warning=DOUBLE</td>
<td>Specifies the response time in seconds to result in a warning status.</td>
</tr>
<tr>
<td>critical=DOUBLE</td>
<td>Specifies the response time in seconds to result in a critical status.</td>
</tr>
</tbody>
</table>

Table 5-2. Extensions for HTTPS Protocol Only

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sni</td>
<td>Enables SSL/TLS hostname extension support (SNI).</td>
</tr>
<tr>
<td>certificate=INTEGER</td>
<td>Specifies the minimum number of days a certificate has to be valid. The port defaults to 443. When this option is used, the URL is not checked.</td>
</tr>
<tr>
<td>authorization=AUTH_PAIR</td>
<td>Specifies the username:password on sites with basic authentication.</td>
</tr>
</tbody>
</table>

Table 5-3. Extensions for TCP Protocol

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>escape</td>
<td>Allows for the use of <code>\n</code>, <code>\r</code>, <code>\t</code>, or <code>\</code> in a send or quit string. Must come before a send or quit option. By default, nothing is added to send and <code>\r\n</code> is added to the end of quit.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all expect strings need to occur in a server response. By default, any is used.</td>
</tr>
</tbody>
</table>
Table 5-3. Extensions for TCP Protocol (Continued)

<table>
<thead>
<tr>
<th>Monitor Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>quit=STRING</td>
<td>Sends a string to the server to cleanly close the connection.</td>
</tr>
<tr>
<td>refuse=ok</td>
<td>warn</td>
</tr>
<tr>
<td>mismatch=ok</td>
<td>warn</td>
</tr>
<tr>
<td>jail</td>
<td>Hides output from the TCP socket.</td>
</tr>
<tr>
<td>maxbytes=INTEGER</td>
<td>Closes the connection when more than the specified number of bytes are received.</td>
</tr>
<tr>
<td>delay=INTEGER</td>
<td>Waits the specified number of seconds between sending the string and polling for a response.</td>
</tr>
<tr>
<td>certificate=INTEGER[,INTEGER]</td>
<td>Specifies the minimum number of days a certificate has to be valid. The first value is #days for warning and the second value is critical (if not specified - 0).</td>
</tr>
<tr>
<td>ssl</td>
<td>Uses SSL for the connection.</td>
</tr>
<tr>
<td>warning=DOUBLE</td>
<td>Specifies the response time in seconds to result in a warning status.</td>
</tr>
<tr>
<td>critical=DOUBLE</td>
<td>Specifies the response time in seconds to result in a critical status.</td>
</tr>
</tbody>
</table>

What to do next

Add server pools for your load balancer. See “Add a Server Pool,” on page 47.

Add a Server Pool

You can add a server pool to manage and share backend servers flexibly and efficiently. A pool manages load balancer distribution methods and has a service monitor attached to it for health check parameters.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2. Click the Load Balancer tab and Pools.
3. Type a name and description for the load balancer pool.
4. Select a balancing method for the service from the Algorithm drop-down menu:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROUND-ROBIN</td>
<td>Each server is used in turn according to the weight assigned to it. This is the smoothest and fairest algorithm when the server processing time remains equally distributed.</td>
</tr>
<tr>
<td>IP-HASH</td>
<td>Selects a server based on a hash of the source and destination IP address of each packet.</td>
</tr>
<tr>
<td>LEASTCONN</td>
<td>Distributes client requests to multiple servers based on the number of connections already on the server. New connections are sent to the server with the fewest connections.</td>
</tr>
<tr>
<td>URI</td>
<td>The left part of the URI (before the question mark) is hashed and divided by the total weight of the running servers. The result designates which server will receive the request. This option ensures that a URI is always directed to the same server as long as no server goes up or down</td>
</tr>
</tbody>
</table>
5 Add members to the pool.
 a Click the **Add** (＋) icon.
 b Type the name and IP address of the server member.
 c Type the port where the member is to receive traffic on and the monitor port where the member is to receive health monitor pings.
 d In **Weight**, type the proportion of traffic this member is to handle.
 e Type the maximum number of concurrent connections the member can handle.
 When the incoming requests are higher than the maximum, they will be queued and the load balancer will wait for a connection to be released.
 f Type the minimum number of concurrent connections a member must always accept.
 g Click **OK**.

6 **(Optional)** To make client IP addresses visible to the backend servers, select **Transparent**.
 When **Transparent** is not selected (the default value), backend servers see the IP address of the traffic source as the internal IP address of the load balancer.
 When **Transparent** is selected, the source IP address is the actual IP address of the client and the edge gateway must be set as the default gateway to ensure that return packets go through the edge gateway.

7 Click **OK**.

What to do next
Add virtual servers for your load balancer. A virtual server has a public IP address and services all incoming client requests. See “Add a Virtual Server,” on page 48.

Add a Virtual Server
Add an edge gateway internal or uplink interface as a virtual server. A virtual server has a public IP address and services all incoming client requests.

By default, the load balancer closes the server TCP connection after each client request.

Procedure
1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2 Click the **Load Balancer** tab and **Virtual Servers**.
3 Click the **Add** (＋) icon.
 The New Virtual Server dialog appears.
4 Configure the following options for the service server:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Virtual Server</td>
<td>(Optional)</td>
</tr>
<tr>
<td>Enable Acceleration</td>
<td>(Optional)</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Application Profile</td>
<td>Select the application profile to be associated with the virtual server. You can associate only an application profile with the same protocol as the virtual server that you are adding.</td>
</tr>
<tr>
<td>Name</td>
<td>Type a name for the virtual server.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Type a description for the virtual server.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Type the IP address that the load balancer is listening on.</td>
</tr>
<tr>
<td>Protocol</td>
<td>(Optional) Select the protocol from the drop-down menu—HTTP, HTTPS, TCP, UDP.</td>
</tr>
<tr>
<td>Port</td>
<td>Type the port number that the load balancer will listen on.</td>
</tr>
<tr>
<td>Default Pool</td>
<td>(Optional)</td>
</tr>
<tr>
<td>Connection Limit</td>
<td>(Optional) Type the maximum concurrent connections that the virtual server can process.</td>
</tr>
<tr>
<td>Connection Rate Limit</td>
<td>(Optional) Type the maximum incoming new connection requests per second.</td>
</tr>
</tbody>
</table>

5 (Optional) To associate application rules with the virtual server, click the **Advanced** tab and complete the following steps:

a Click the **Add (✚)** icon.

 The application rules created for the load balancer appear. If necessary, add application rules for the load balancer. See “Add an Application Rule,” on page 49.

b

6 Click OK.

What to do next

Create an edge gateway firewall rule to permit traffic to the new virtual server (the destination IP address). See “Add an Edge Gateway Firewall Rule,” on page 31.

Add an Application Rule

You can write an application rule to directly manipulate and manage IP application traffic.

Procedure

1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2 Click the **Load Balancer** tab and **Application Rules**.

3 Click the **Add (✚)** icon.

 The Add Application Rule dialog box appears.

4 Type the name for the application rule.

5 Type the script for the application rule.

 For information on the application rule syntax, see http://cbonte.github.io/haproxy-dconv/configuration-1.5.html.

 For more information about creating application rules for load balancing in vCloud Air, see Application Rule Examples in the NSX Administration Guide.
What to do next

Associate the new application rule to a virtual server added for the load balancer. Click the **Load Balancer** tab > **Virtual Servers** and the **Edit** icon. Associate applications rules by clicking the **Advanced** tab. See “Add a Virtual Server,” on page 48 for the steps to associate applications rules with a virtual server.
Secure Access Using Virtual Private Networks

You can connect to vCloud Air by using the following secure methods—an SSL VPN-Plus tunnel or an IPsec VPN tunnel. Use Advanced Networking Services to configure these tunnels.

After configuring your VPN tunnels, use a VPN client from your remote location to log into vCloud Air and manage your Infrastructure-as-a-Service resources.

This chapter includes the following topics:

- “SSL VPN-Plus Overview,” on page 51
- “About Configuring SSL VPN-Plus,” on page 52
- “IPsec VPN Overview,” on page 63
- “About Setting up an IPsec VPN Connection,” on page 64

SSL VPN-Plus Overview

With SSL VPN-Plus, you can use Advanced Networking Services to achieve the following goals:

- Connect remotely to private networks behind an edge gateway to access servers and applications.
- Securely access virtual machines deployed in vCloud Air without having to connect to your corporate data center first and establish an IPsec VPN tunnel to vCloud Air.

Using SSL VPN-Plus essentially eliminates segment from the network connection.
SSL VPN-Plus supports VPN clients on the following operating systems:

- Windows XP and above

 Note Windows 8 is supported.

- Mac OS X Tiger, Leopard, Snow Leopard, Lion, Mountain Lion, and Maverick

 These clients can be installed manually or by using the Java installer.

- (Required) Linux - TCL-TK

 If not installed locally, the Linux client can be accessed using the CLI.

About Configuring SSL VPN-Plus

Configuring SSL VPN-Plus for vCloud Air is a multi-step process.

Note After configuring SSL VPN-Plus in Advanced Networking Services, vCloud Air users must download and install a VPN client on their local systems.

Remote users download the SSL client from vCloud Air and connect to vCloud Air over SSL VPN.

1. **Configure Server Settings** on page 53

 You must add SSL VPN server settings to enable SSL on an edge gateway interface.

2. **Add an IP Pool** on page 54

 The remote user is assigned a virtual IP address from the IP pool that you add.

3. **Add a Private Network** on page 55

 Add the network that you want the remote user to be able to access.

4. **Add an Authentication Server** on page 56

 Instead of a local user, you can add an external authentication server (AD, LDAP, RADIUS, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.
5 Add an Installation Package on page 58
Create an installation package of the SSL VPN-Plus client for the remote user.

6 Add an SSL VPN-Plus User on page 59
Add a remote user to the local database.

7 Add a Web Resource for SSL VPN-Plus Access on page 60
Add a server that the remote user can connect to via a Web browser.

8 Edit Client Configuration on page 61
You can change the way the SSL VPN client tunnel responds when the remote user logs in to SSL VPN.

9 Add a Script on page 62
You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com; when a remote user logs in to the SSL client, Internet Explorer opens gmail.com.

10 Edit the Default SSL VPN-Plus Settings on page 62
You can edit the default VPN settings.

11 Customize the Portal Design on page 63
You can edit the client banner bound to the SSL VPN client.

Configure Server Settings
You must add SSL VPN server settings to enable SSL on an edge gateway interface.

To connect to the edge gateway in vCloud Air, remote users specify the IP address and port number you set in this procedure.

If your edge gateway is configured with multiple, overlay IP address networks on its external interface, the IP address you select might be different from the default external interface of the edge gateway.

While configuring server settings, you must choose which encryption algorithms to use for the SSL VPN tunnel. You can choose one or multiple ciphers to support; VMware recommends you be aware of the strength and weakness of the ciphers you select.

Specify an identity certificate for the SSL VPN tunnel. You can choose to use the default, self-signed certificate that the Advanced Networking Services generates for each edge gateway or you can specify an externally-generated digital certificate.

Prerequisites
If you choose to use a certificate other than the default certificate, import the required certificate into vCloud Air. See “Add a Certificate,” on page 25 for information.

Procedure
1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2 Click the SSL VPN-Plus tab and Server Settings.

3 Click Change next to Server Settings.
 The Change Service Settings dialog box appears.

4 Select an IPv4 or an IPv6 address.
5 (Optional) Change the port number.

By default, Advanced Networking Services use port 443, which is the default port for HTTPS/SSL traffic. A port number is required to configure the installation package; however, you can set any TCP port for communications.

6 Select the encryption method.

7 (Optional) From the Server Certificate table, select the server certificate that you want to add.

Or

Select Use Default Certificate.

8 Click OK.

What to do next

Note The edge gateway IP address and the TCP port number you set must be reachable by your remote users. Add an edge gateway firewall rule that allows access to the SSL VPN-Plus IP address and port configured in this procedure. See “Add an Edge Gateway Firewall Rule,” on page 31 for information.

Add an IP pool so that remote users are assigned IP addresses when they connect using SSL VPN-Plus. See “Add an IP Pool,” on page 54 for information.

Add an IP Pool

The remote user is assigned a virtual IP address from the IP pool that you add.

Procedure

1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2 Click the SSL VPN-Plus tab and IP Pools.

3 Click the Add (+) icon.

The Add IP Pool dialog box appears.

4 Configure the following options for the IP pool:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Range</td>
<td>Type the begin and end IP address for the IP pool.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Type the netmask of the IP pool.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Type the IP address to add the routing interface for the edge gateway.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Type a description for the IP pool.</td>
</tr>
<tr>
<td>Status</td>
<td>Select whether to enable or disable the IP pool.</td>
</tr>
<tr>
<td>Primary DNS</td>
<td>(Optional) In the Advanced section, type the DNS name.</td>
</tr>
<tr>
<td>Secondary DNS</td>
<td>(Optional) Type the secondary DNS name.</td>
</tr>
<tr>
<td>DNS Suffix</td>
<td>(Optional) Type the connection-specific DNS suffix for domain based host name resolution.</td>
</tr>
<tr>
<td>WINS Server</td>
<td>(Optional) Type the WINS server address.</td>
</tr>
</tbody>
</table>

5 Click OK.

What to do next

Add private networks that you want accessible to your remote users connecting with SSL VPN-Plus. See “Add a Private Network,” on page 55.
Add a Private Network

Add the network that you want the remote user to be able to access.

Each private network that requires access through a VPN tunnel must be added as a separate entry. If necessary, use Route Summarization to limit the number of entries in the Private Network table.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2. Click the SSL VPN-Plus tab and Private Networks.
3. Click the Add (➕) icon.
 The Add Private Network dialog box appears.
4. Configure the following options for the private network:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Type the private network IP address.</td>
</tr>
<tr>
<td>Description (Optional)</td>
<td>Type a description for the network.</td>
</tr>
<tr>
<td>Send Traffic</td>
<td>Specify whether you want to send private network and Internet traffic over the SSL VPN-Plus enabled edge gateway or directly to the private server by bypassing the edge gateway.</td>
</tr>
<tr>
<td>Enable TCP Optimization (Optional)</td>
<td>When you select Send Traffic Over Tunnel, VMware recommends selecting Enable TCP Optimization to optimize the Internet speed. Selecting this option enhances the performance of TCP packets within the VPN tunnel but does not improve performance of UDP traffic. Conventional full-access SSL VPNs tunnel sends TCP/IP data in a second TCP/IP stack for encryption over the Internet. Selecting this option encapsulates application layer data in two separate TCP streams. When packet loss occurs (which happens even under optimal Internet conditions), a performance degradation effect called TCP-over-TCP meltdown occurs. Two TCP instruments correct a single packet of IP data, undermining network throughput and causing connection timeouts. TCP Optimization eliminates this TCP-over-TCP problem.</td>
</tr>
<tr>
<td>Ports</td>
<td>Type the port numbers that you want to open for the remote user to access the corporate internal servers; for example, 3389 for RDP, 20/21 for FTP, and 80 for HTTP. To give unrestricted access to users, leave the Ports field blank.</td>
</tr>
<tr>
<td>Status</td>
<td>Specify whether you want to enable or disable the private network.</td>
</tr>
</tbody>
</table>

5. Click OK.

What to do next

Add authentication servers for your SSL VPN-Plus configuration. See “Add an Authentication Server,” on page 56.

If necessary, add Web resources that remote users can access in addition to private networks. See “Add a Web Resource for SSL VPN-Plus Access,” on page 60.

IMPORTANT: Add a corresponding firewall rule to allow network traffic to the private network. See “Add an Edge Gateway Firewall Rule,” on page 31 for information.
Add an Authentication Server

Instead of a local user, you can add an external authentication server (AD, LDAP, RADIUS, or RSA) which is bound to the SSL gateway. All users with accounts on the bound authentication server will be authenticated.

The maximum time to authenticate over SSL VPN is 3 minutes. This maximum is set because the non-authentication timeout is 3 minutes; the non-authentication timeout value is not configurable.

Note Users will not be authenticated when either of the following conditions occur:

- The AD authentication timeout is set to more than 3 minutes.
- The environment has multiple authentication servers in chain authorization and user authentication takes more than 3 minutes.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2. Click the **SSL VPN-Plus** tab and **Authentication**.
3. Click the **Add (✚) icon**. The Add Authentication Server dialog box appears.
4. Select the type of authentication server—AD, LDAP, RADIUS, RSA-ACE, or LOCAL.
5. Depending on the type of authentication server you selected, complete the following fields.

 - **AD and LDAP authentication servers**

 Table 6-1. AD and LDAP Authentication Server Options

Option	Description
Enable SSL	Establishes an encrypted link between a Web server and a browser.
IP Address	The IP address of the authentication server.
Port	Displays the default port name. Edit if required.
Timeout	The time in seconds within which the AD server must respond.
Status	Enables or disables the server.
Search base	Part of the external directory tree to search. The search base can be equivalent to the organization, group, or domain name (AD) of the external directory.
Bind DN	Permits users on the external AD server to search the AD within the defined search base. Typically, the bind DN option permits users to search the entire directory. The bind DN option allows users to query the directory using the query filter and search base for the DN (distinguished name) of authenticating AD users. When the DN is returned, the DN and password are used to authenticate the AD user.
Bind Password	The password to authenticate the AD user.
Retype Bind Password	Verifies the password to authenticate the AD user.
Login Attribute Name	The name against which the user ID entered by the remote user is matched. For Active Directory, the login attribute name is sAMAccountName.
Search Filter	Filters the values used to limit the search. The search filter format is attribute operator value.
Table 6-1. AD and LDAP Authentication Server Options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this server for secondary authentication</td>
<td>Whether to use the server as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>Ends the session when authentication fails.</td>
</tr>
</tbody>
</table>

RADIUS authentication server

Table 6-2. RADIUS authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the external server.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays the default port name. Edit if required.</td>
</tr>
<tr>
<td>Timeout</td>
<td>The time in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Status</td>
<td>Enables or disables the server.</td>
</tr>
<tr>
<td>Secret</td>
<td>Specifies the shared secret when adding an authentication agent in the RSA security console.</td>
</tr>
<tr>
<td>Retype secret</td>
<td>Verifies the password to authenticate the AD user.</td>
</tr>
<tr>
<td>NAS IP Address</td>
<td>Configures the IP address used as the RADIUS attribute without changing the source IP address in the IP header of the RADIUS packets.</td>
</tr>
<tr>
<td>Retry Count</td>
<td>The number of times to contact the RADIUS server when it does not respond before the authentication fails.</td>
</tr>
<tr>
<td>Use this server for secondary authentication</td>
<td>Whether to use the server as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>Ends the session when authentication fails.</td>
</tr>
</tbody>
</table>

RSA-ACE authentication server

Table 6-3. RSA-ACE authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout</td>
<td>The time in seconds within which the AD server must respond.</td>
</tr>
<tr>
<td>Configuration File</td>
<td>Click Browse to select the <code>sdconf.rec</code> file that you downloaded from the RSA Authentication Manager.</td>
</tr>
<tr>
<td>Status</td>
<td>Enables or disables the server.</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>The IP address of the edge gateway interface through which the RSA server is accessible.</td>
</tr>
</tbody>
</table>
Table 6-3. RSA-ACE authentication server options (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this server for secondary authentication</td>
<td>Whether to use the server as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>Ends the session when authentication fails.</td>
</tr>
</tbody>
</table>

Note Adding a user for SSL VPN-Plus automatically adds a local authentication server in the SSL VPN-Plus > Authentication page and configures the default values. If necessary, select Enable password policy and Enable account lockout policy to view and edit the default values. See “Add an SSL VPN-Plus User,” on page 59 for information.

Local authentication server

Table 6-4. Local authentication server options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password policy</td>
<td>Defines a password policy. Specify the required values. You must set a minimum length, the time until expiration, and when users are notified of expiration. All other fields are optional.</td>
</tr>
<tr>
<td>Enable account lockout policy</td>
<td>(Optional) Defines an account lockout policy. Specify the required values.</td>
</tr>
<tr>
<td></td>
<td>1 In Retry Count, type the number of times a remote user can try to access his or her account after entering an incorrect password.</td>
</tr>
<tr>
<td></td>
<td>2 In Retry Duration, type the time period in which the remote user's account gets locked on unsuccessful login attempts. For example, if you specify the Retry Count as 5 and Retry Duration as 1 minute, the remote user's account will be locked if he makes 5 unsuccessful login attempts within 1 minute.</td>
</tr>
<tr>
<td></td>
<td>3 In Lockout Duration, type the time period for which the user account remains locked. After this time, the account is automatically unlocked.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>Enables or disables the server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this server for secondary authentication</td>
<td>(Optional) Whether to use the server as the second level of authentication.</td>
</tr>
<tr>
<td>Terminate Session if authentication fails</td>
<td>(Optional) Ends the session when authentication fails.</td>
</tr>
</tbody>
</table>

6 Click OK.

What to do next

Create an installation package containing the SSL Client so remote users can install it on their local systems. See “Add an Installation Package,” on page 58.

If necessary, add local users who are not members of external authentication servers so that they can connect with SSL VPN-Plus. See “Add an SSL VPN-Plus User,” on page 59.

Add an Installation Package

Create an installation package of the SSL VPN-Plus client for the remote user.

If you require different installation parameters per operating system (Windows, Linux, and Mac), add an installation package for each operating system. The installation packages you add for SSL VPN-Plus are downloadable from the SSL VPN-Plus portal. New users are prompted to download and install a package when they log in for the first time.
Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **SSL VPN-Plus** tab and **Installation Package**.

3. Click the **Add (⊕)** icon.
 The Add Installation Package dialog box appears.

4. Type a profile name for the installation package.

5. In **Gateway**, type the IP address or FQDN of the public interface of the edge gateway.
 This IP address or FQDN is bound to the SSL client. When the client is installed, this IP address or
 FQDN is displayed on the SSL client.

6. Type the port number that you specified in the server settings for SSL VPN-Plus.

7. (Optional) To bind additional edge gateway uplink interfaces to the SSL client:
 a. Click the **Add (⊕)** icon.
 b. Type the IP address and port number.
 c. Click **OK**.

8. The installation package is created for Windows operating system by default. Select Linux or Mac to
 create an installation package for Linux or Mac operating systems as well.

9. (Optional) Enter a description for the installation package.

10. Select **Enable** to display the installation package on the Installation Package page.

11. Select the following options as required:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start client on logon</td>
<td>Starts the SSL VPN client when the remote user logs on to the system.</td>
</tr>
<tr>
<td>Allow remember password</td>
<td>Enables the option.</td>
</tr>
<tr>
<td>Enable silent mode installation</td>
<td>Hides installation commands from remote users.</td>
</tr>
<tr>
<td>Hide SSL client network adapter</td>
<td>Hides the VMware SSL VPN-Plus Adapter, which is installed on the remote user's computer along with the SSL VPN installation package.</td>
</tr>
<tr>
<td>Hide client system tray icon</td>
<td>Hides the SSL VPN tray icon which indicates whether the VPN connection is active or not.</td>
</tr>
<tr>
<td>Create desktop icon</td>
<td>Creates an icon to invoke the SSL client on the user's desktop.</td>
</tr>
<tr>
<td>Enable silent mode operation</td>
<td>Hides the pop-up that indicates that installation is complete.</td>
</tr>
<tr>
<td>Server security certificate validation</td>
<td>The SSL VPN client validates the SSL VPN server certificate before establishing the secure connection.</td>
</tr>
</tbody>
</table>

12. Click **OK**.

Add an SSL VPN-Plus User

Add a remote user to the local database.

Adding a user for SSL VPN-Plus automatically adds a local authentication server in the **SSL VPN-Plus > Authentication** page. See “Add an Authentication Server,” on page 56 for information about authentication server settings.
Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the SSL VPN-Plus tab and Users.

3. Click the Add (➕) icon.

 The Add User dialog box appears.

4. Configure the following options for the user:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>Type the user ID.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password.</td>
</tr>
<tr>
<td>Re-type Password</td>
<td>Retype the password.</td>
</tr>
<tr>
<td>First Name</td>
<td>(Optional) Type the first name of the user.</td>
</tr>
<tr>
<td>Last Name</td>
<td>(Optional) Type the last name of the user.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Type a description for the user.</td>
</tr>
<tr>
<td>Password never expires</td>
<td>In Password Details, select Password never expires to always keep the same password for the user.</td>
</tr>
<tr>
<td>Allow change password</td>
<td>Select Allow change password to let the user change the password.</td>
</tr>
<tr>
<td>Change password on next login</td>
<td>Select Change password on next login when you want users to change their passwords the next time they log in.</td>
</tr>
<tr>
<td>Status</td>
<td>Set the user status.</td>
</tr>
</tbody>
</table>

5. Click OK.

Add a Web Resource for SSL VPN-Plus Access

Add a server that the remote user can connect to via a Web browser.

Configuring a Web resource allows a user to access the published Web resource without the need to install an SSL client locally. Web access in SSL VPN-Plus is a way to share internal resources (such as CRM, Sharepoint data, and other Web applications) through the SSL VPN-Plus interface.

Prerequisites

Adding a Web resource to your SSL VPN-Plus configuration is optional. You can configure SSL VPN-Plus so that remote users only have access to specified private networks. However, if you choose to provide direct access (through a Web browser) to a Web resource, you must complete all SSL VPN-Plus configuration steps. See “About Configuring SSL VPN-Plus,” on page 52 for information.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the SSL VPN-Plus tab and Web Resource.

3. Click the Add (➕) icon.

 The Add Web Resource dialog box appears.
Configure the following options as required:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type the name for the Web resource.</td>
</tr>
<tr>
<td>URL</td>
<td>Type the URL of the Web resource that you want the remote user to access.</td>
</tr>
<tr>
<td>HTTP Method</td>
<td>(Optional) Depending on whether the remote user wants to read from or write to the Web resource, select the HTTP method.</td>
</tr>
<tr>
<td>HTTP Query</td>
<td>(Optional) Type the GET or POST query parameters.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Type a description for the Web resource. This description is displayed on the Web portal when the remote user accesses the Web resource.</td>
</tr>
<tr>
<td>Status</td>
<td>(Optional) Select Enable to enable the Web resource. The Web resource must be enabled for the remote user to access it.</td>
</tr>
</tbody>
</table>

5 Click OK.

Edit Client Configuration

You can change the way the SSL VPN client tunnel responds when the remote user logs in to SSL VPN.

Procedure

1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2 Click the SSL VPN-Plus tab and Client Configuration.

3 Next to Client Configuration, click Change.

The Change Client Configuration dialog box appears.

4 Select the Tunneling Mode.

- In split tunnel mode, only the VPN traffic flows through the edge gateway.
- In full tunnel mode, the edge gateway becomes the remote user’s default gateway and all traffic (VPN, local, and Internet) flows through the edge gateway.

5 If you selected full tunnel mode, specify the following options:

 a To exclude local traffic from flowing through the VPN tunnel, select Exclude local subnets.
 b Type the IP address for the default gateway of the remote user’s system.

6 To automatically reconnect remote users to the SSL VPN client when they get disconnected, select Enable auto reconnect.

7 To send remote users notices when an upgrade for the client is available, select Client upgrade notification.

 Remote users can choose to install the upgrade.

8 Click OK.

What to do next

If necessary, scripts to control the way that remote users log in to and log out of the SSL VPN client tunnel. See “Add a Script,” on page 62.
Add a Script
You can add multiple login or logoff scripts. For example, you can bind a login script for starting Internet Explorer with gmail.com; when a remote user logs in to the SSL client, Internet Explorer opens gmail.com.

Procedure
1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2 Click the SSL VPN-Plus tab and Login/Logoff Scripts.
3 Click the Add (➕) icon.
The Add Login-Logoff script dialog box appears.
4 Configure the following options for the script:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script</td>
<td>In Script, click Browse and select the script you want to bind to the edge gateway.</td>
</tr>
<tr>
<td>Type</td>
<td>Select the type of script:</td>
</tr>
<tr>
<td></td>
<td>• Login: Performs the script action when the remote user logs in to SSL VPN.</td>
</tr>
<tr>
<td></td>
<td>• Logoff: Performs the script action when the remote user logs out of SSL VPN.</td>
</tr>
<tr>
<td></td>
<td>• Both: Performs the script action both when the remote user logs in and logs out of SSL VPN.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Type a description for the script.</td>
</tr>
<tr>
<td>Status</td>
<td>Select Enabled to enable the script.</td>
</tr>
</tbody>
</table>
5 Click OK.

Edit the Default SSL VPN-Plus Settings
You can edit the default VPN settings.

Procedure
1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2 Click the SSL VPN-Plus tab and General Settings.
3 Next to General Settings, click Change.
The Change General Settings dialog box appears.
4 Modify the following options as required:

<table>
<thead>
<tr>
<th>Select</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevent multiple logon using same username</td>
<td>Allow remote users to login only once with their user names.</td>
</tr>
<tr>
<td>Enable compression</td>
<td>Enable TCP based intelligent data compression and improve data transfer speed.</td>
</tr>
<tr>
<td>Enable logging</td>
<td>Maintain a log of the traffic passing through the SSL VPN gateway.</td>
</tr>
<tr>
<td>Force virtual keyboard</td>
<td>Allow remote users to enter Web or client login information only via the virtual keyboard.</td>
</tr>
</tbody>
</table>
Select keys of virtual keyboard | Make the virtual keyboard keys random.
---|---
Enable forced timeout | Disconnect remote users after the specified timeout period is over. Type the timeout period in minutes.
Session idle timeout | When there is no activity on a user's session for the specified period, end the user session after that period is over.
User notification | Type a message to be displayed to remote users after they log in.
Enable public URL access | Allow remote users to access any site which is not configured (and not listed on Web portal) by the administrator.

5 Click OK.

Customize the Portal Design

You can edit the client banner bound to the SSL VPN client.

Procedure

1 Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2 Click the SSL VPN-Plus tab and Portal Customization.
3 Next to Web Portal Design, click Change.
 The Change Web Portal Design dialog box appears.
4 To customize the banner that appears when a user logs in to the SSL VPN client, modify the following options:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal Title</td>
<td>Type the portal title.</td>
</tr>
<tr>
<td>Company Name</td>
<td>Type the remote user’s company name.</td>
</tr>
<tr>
<td>Logo</td>
<td>In Logo, click Change and select the image file for the remote user’s logo.</td>
</tr>
<tr>
<td>Colors</td>
<td>In Colors, click the color box next to numbered item for which you want to change the color, and select the desired color.</td>
</tr>
</tbody>
</table>
5 Click OK.
6 To change the client banner, click Change next to Full Access Client Design.
 The Change Full Access Client Design dialog box appears.
7 Change the image for the banner and images for the status icons as desired and click OK.

IPsec VPN Overview

Internet Protocol Security (IPsec) is a protocol suite for securing the IP packets of a communication session. vCloud Air supports using IPsec to create a secure VPN connection between your vCloud Air service and a remote site, such as your on-premises data center.

The edge gateway supports site-to-site IPsec VPN between an edge gateway instance and remote sites. Additionally, the edge gateway supports certificate authentication, preshared key mode, and IP unicast traffic between itself and remote VPN routers.

Using an IPsec tunnel, you can configure multiple subnets to connect to the internal network behind an edge gateway. These subnets and the internal network behind an edge gateway must have address ranges that do not overlap.
You can deploy an edge gateway agent behind a NAT device. In this deployment, the NAT device translates the VPN address of an edge gateway instance to a publicly accessible address facing the Internet. Remote VPN routers use this public address to access the edge gateway instance. You can place remote VPN routers behind a NAT device as well. You must provide the VPN native address and the VPN Gateway ID to set up the tunnel. On both ends, static one-to-one NAT is required for the VPN address.

You can have a maximum of 64 tunnels across a maximum of 10 sites.

Note When you configure an IPsec VPN tunnel between a vCloud Air edge gateway and a physical gateway VPN at a remote site, you cannot configure dynamic routing using BGP for that connection.

The following IPsec VPN algorithms are supported:
- 3DES192-CBC
- AES128-CBC
- AES128-CBC
- AES128-CBC
- AES128-CBC
- DH-2
- DH-5

For IPsec VPN configuration examples, see NSX Edge VPN Configuration Examples in the NSX Administration Guide.

See also About Setting up an IPsec VPN Connection in the vCloud Air Networking Guide.

About Setting up an IPsec VPN Connection

Using the edge gateway, you can set up a tunnel between a local subnet and a peer subnet.

Note If you connect to a remote site via IPsec VPN, the IP address of that site cannot be learned by Dynamic Routing on the uplink of the edge gateway.

1. **Specify Global IPsec VPN Configuration** on page 64

 You can specify on a global level how your IPsec VPN connection to vCloud Air uses certificate authentication and a pre-shared key.

2. **Set up an IPsec VPN Connection to a Remote Site** on page 65

 This procedure provides the steps to create an IPsec VPN connection between vCloud Air and a remote site. In this procedure, you configure the vCloud Air side of the connection.

Specify Global IPsec VPN Configuration

You can specify on a global level how your IPsec VPN connection to vCloud Air uses certificate authentication and a pre-shared key.

vCloud Air uses a pre-shared key with an IPsec VPN connection to authenticate the other peer. Even when the connection is encrypted, you need to know that the peer you are establishing a connection with is the one it should be. Encrypting the connection ensures confidentiality in the connection and a pre-shared key authenticates the other party.

Prerequisites

You must import server certificates, CA certificates, or CRLs before you can enable certificate authentication.
Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.

 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Routing** tab and **IPSEC VPN**.

3. Next to **Global configuration status**, click **Change**.

 The Global Configuration dialog box appears.

4. Type a global pre-shared key for those sites whose peer endpoint is set to any and select **Display shared key** to display the key.

5. In the **Extension** text box, type one of the following options:

 - `securelocaltrafficbyip=IPAddress` to re-direct the edge gateway local traffic over the IPsec VPN tunnel. This is the default value.

 - `passthroughSubnets=PeerSubnetIPAddress` to support overlapping subnets.

6. Select **Enable certificate authentication** and select the appropriate certificate.

7. Click **OK**.

What to do next

Configure the IPsec VPN connection to the remote site. See “Set up an IPsec VPN Connection to a Remote Site,” on page 65.

Set up an IPsec VPN Connection to a Remote Site

This procedure provides the steps to create an IPsec VPN connection between vCloud Air and a remote site. In this procedure, you configure the vCloud Air side of the connection.

For an explanation of each part of an IPsec VPN connection, such as peer networks, local endpoints, peer IDs, peer IPs, and local IDs, see About Setting up an IPsec VPN Connection in the vCloud Air Networking Guide.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.

2. Click the **Routing** tab and **IPSEC VPN**.

3. Click the **Add** (➕) icon.

 The Add IPsec VPN dialog box appears.
Complete the following settings for the IPsec VPN connection:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Select the checkbox to enable the connection between the two VPN endpoints.</td>
</tr>
<tr>
<td>Enable perfect forward secrecy (PFS)</td>
<td>Select to generate unique public keys for all sessions your users initiate.</td>
</tr>
<tr>
<td></td>
<td>Enabling PFS ensures that vCloud Air does not create a link between the</td>
</tr>
<tr>
<td></td>
<td>edge gateways private key and each session key.</td>
</tr>
<tr>
<td></td>
<td>The compromise of a session key will not affect data other than that</td>
</tr>
<tr>
<td></td>
<td>exchanged in the specific session protected by that particular key.</td>
</tr>
<tr>
<td></td>
<td>Compromise of the server's private key cannot be used to decrypt archived</td>
</tr>
<tr>
<td></td>
<td>sessions or future sessions.</td>
</tr>
<tr>
<td></td>
<td>When PFS is enabled, IPsec VPN connections to vCloud Air experience a</td>
</tr>
<tr>
<td></td>
<td>slight processing overhead.</td>
</tr>
<tr>
<td></td>
<td>Important The unique session keys must not be used to derive any</td>
</tr>
<tr>
<td></td>
<td>additional keys. Additionally, both sides of the IPsec VPN tunnel must</td>
</tr>
<tr>
<td></td>
<td>support PFS for it to work.</td>
</tr>
<tr>
<td>Name (Optional)</td>
<td>Enter a name for the connection.</td>
</tr>
<tr>
<td>Local Id</td>
<td>Type the external IP address of the edge gateway instance, which is the</td>
</tr>
<tr>
<td></td>
<td>public IP address of the edge gateway.</td>
</tr>
<tr>
<td></td>
<td>This will be the peer Id on the remote site.</td>
</tr>
<tr>
<td>Local Endpoint</td>
<td>Type the network that is the local endpoint for the connection. The local</td>
</tr>
<tr>
<td></td>
<td>endpoint specifies the network in vCloud Air on which the edge gateway</td>
</tr>
<tr>
<td></td>
<td>transmits. Typically, the external network is the local endpoint.</td>
</tr>
<tr>
<td></td>
<td>Note If you are adding an IP-to-IP tunnel using a pre-shared key, the</td>
</tr>
<tr>
<td></td>
<td>local Id and local endpoint IP can be the same.</td>
</tr>
<tr>
<td>Local Subnets</td>
<td>Type the networks to share between the sites. Use a comma separator to</td>
</tr>
<tr>
<td></td>
<td>type multiple subnets.</td>
</tr>
<tr>
<td></td>
<td>Note Enter a network range (not a specific IP address) by entering the</td>
</tr>
<tr>
<td></td>
<td>IP address using CIDR format; for example, 192.168.99.0/24.</td>
</tr>
<tr>
<td>Peer Id</td>
<td>Type the peer ID to uniquely identify the peer site. The peer ID is the</td>
</tr>
<tr>
<td></td>
<td>public IP address of the remote device terminating the VPN connection.</td>
</tr>
<tr>
<td></td>
<td>For peers using certificate authentication, this ID must be the common</td>
</tr>
<tr>
<td></td>
<td>name in the peer's certificate. For PSK peers, this ID can be any string.</td>
</tr>
<tr>
<td></td>
<td>VMware recommends that you use the public IP address of the VPN or a</td>
</tr>
<tr>
<td></td>
<td>FQDN for the VPN service as the peer ID.</td>
</tr>
<tr>
<td></td>
<td>When the peer IP address is from another organization VDC network, enter</td>
</tr>
<tr>
<td></td>
<td>the native IP address of the peer. When NAT is configured for the peer,</td>
</tr>
<tr>
<td></td>
<td>enter the private IP address of the peer.</td>
</tr>
<tr>
<td>Peer Endpoint</td>
<td>Type the IP address of the peer site, which is the public IP address of the</td>
</tr>
<tr>
<td></td>
<td>remote device to which you are connecting. When you leave this option</td>
</tr>
<tr>
<td></td>
<td>blank, the edge gateway waits for the peer device to request a connection.</td>
</tr>
<tr>
<td></td>
<td>Note When NAT is configured for the peer, enter the public IP address</td>
</tr>
<tr>
<td></td>
<td>that the device uses for NAT.</td>
</tr>
<tr>
<td>Peer Subnets</td>
<td>Enter the remote network to which the VPN connects. Use a comma separator</td>
</tr>
<tr>
<td></td>
<td>to type multiple subnets.</td>
</tr>
<tr>
<td></td>
<td>Note Enter a network range (not a specific IP address) by entering the</td>
</tr>
<tr>
<td></td>
<td>IP address using CIDR format; for example, 192.168.99.0/24.</td>
</tr>
<tr>
<td>Encryption Algorithm</td>
<td>Select the encryption type from the drop-down list.</td>
</tr>
<tr>
<td></td>
<td>Note The encryption type you select must match the encryption type</td>
</tr>
<tr>
<td></td>
<td>configured on the remote site VPN device.</td>
</tr>
<tr>
<td>Authentication</td>
<td>Select one of the following options:</td>
</tr>
<tr>
<td></td>
<td>■ PSK (Pre Shared Key)—Indicates that the secret key shared between</td>
</tr>
<tr>
<td></td>
<td>vCloud Air and the peer site is to be used for authentication.</td>
</tr>
<tr>
<td></td>
<td>■ Certificate—Indicates that the certificate defined at the global level is</td>
</tr>
<tr>
<td></td>
<td>to be used for authentication.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pre-Shared Key</td>
<td>If you selected PSK as the authentication type, type an alphanumeric string between 32 and 128 characters, which includes at least one uppercase letter, one lowercase letter, and one number. Indicates that the secret key shared between vCloud Air and the peer site is to be used for authentication. Note The shared key must match the key that is configured on the remote site VPN device. Important VMware recommends that you configure a shared key when anonymous sites will connect to the VPN service.</td>
</tr>
<tr>
<td>Display shared key</td>
<td>(Optional) Select to display the shared key on the peer site.</td>
</tr>
<tr>
<td>Diffie-Hellman Group</td>
<td>If you selected PSK as the authentication type, select the cryptography scheme that will allow the peer site and the edge gateway in vCloud Air to establish a shared secret over an insecure communications channel. Note The Diffie-Hellman Group must match what is configured on the remote site VPN device.</td>
</tr>
<tr>
<td>Extension</td>
<td>(Optional) Type one of the following options:</td>
</tr>
<tr>
<td></td>
<td>- <code>securelocaltrafficbyip=IP Address</code> to re-direct the edge gateway local traffic over the IPsec VPN tunnel. This is the default value.</td>
</tr>
<tr>
<td></td>
<td>- <code>passthroughSubnets=PeerSubnetIP Address</code> to support overlapping subnets.</td>
</tr>
</tbody>
</table>

5 Click **OK**.

The VPN configuration appears in the table.

What to do next

You must configure the IPsec VPN connection from both sides of the connection—vCloud Air and your on-premises facility. This procedure details how to configure the connection for vCloud Air. Configure the connection for your on-premises facility.
Advanced Networking Services provides functionality to manage Network Address Translation for the virtual machines deployed in vCloud Air and to configure the DHCP server for an edge gateway.

You can manage these services by using Advanced Networking Services or by using the networking features in the vCloud Air UI and vCloud Director UI. See the vCloud Air Networking Guide for information.

This chapter includes the following topics:

- “Network Address Translation (NAT),” on page 69
- “DHCP Service,” on page 71

Network Address Translation (NAT)

The edge gateway provides a network address translation (NAT) service to assign a public address to a virtual machine or group of virtual machines in a private network.

Using this technology limits the number of public IP addresses that an organization or company must use, for economy and security purposes. You must configure NAT rules to provide access to services running on privately addressed virtual machines.

The NAT service configuration is separated into source NAT (SNAT) and destination NAT (DNAT) rules.

When you configure an SNAT or a DNAT rule, you always configure the rule from the perspective of vCloud Air. Specifically, that means you configure the rules in the following ways:

- **SNAT**: the traffic is traveling from a virtual machine on an internal network in vCloud Air (the source) through the Internet to the external network (the destination).
- **DNAT**: the traffic is traveling from the Internet (the source) to a virtual machine inside vCloud Air (the destination).

You can configure NAT rules to create a private IP address space inside vCloud Air to port your private IP address space from your enterprise into the cloud. Configuring NAT rules in vCloud Air allows you to use the same private IP addresses for your virtual machines in vCloud Air that were used on premises in your local data center.

NAT rules in vCloud Air include the following support:

- Creating subnets within the private IP address space
- Creating multiple private IP address spaces for an edge gateway
Configuring multiple NAT rules on multiple edge gateway interfaces

IMPORTANT By default, edge gateways are deployed with firewall rules configured to deny all network traffic to and from the virtual machines on the edge gateway networks. Also, NAT is disabled by default so that edge gateways are unable to translate the IP addresses of the incoming and outgoing traffic. You must configure both firewall and NAT rules on an edge gateway for the virtual machines on an edge gateway network to be accessible. Attempting to ping a virtual machine on a network after configuring a NAT rule will fail without adding a firewall rule to allow the corresponding traffic.

Add an SNAT or DNAT Rule

You can create a source NAT (SNAT) or rule to change the source IP address from a public to private IP address or the reverse. You can create a destination NAT (DNAT) rule to change the destination IP address from a public to private IP address or the reverse.

When creating NAT rules, you can specify the original and translated IP addresses by using the following formats:

- IP address; for example, 192.0.2.0
- IP address range; for example, 192.0.2.0-192.0.2.24
- IP address/subnet mask; for example, 192.0.2.0/24
- any

Prerequisites
The translated (public) IP address must have been added to the edge gateway interface on which you want to add the rule.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI.
 See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2. Click the **SSL VPN-Plus** tab and **NAT**.
3. Click the **Add** ((PC) icon and choose one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add DNAT Rule</td>
<td>A DNAT rule changes the destination IP address and, optionally, port of inbound packets.</td>
</tr>
<tr>
<td>Add SNAT Rule</td>
<td>An SNAT rule changes the source IP address and, optionally, port of outgoing packets.</td>
</tr>
</tbody>
</table>

4. Select the interface on which to apply the rule.
5. Depending on which type of NAT rule you are creating, complete the following options:

 Destination NAT (DNAT) (outside -> inside)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original IP/Range</td>
<td>Specifies the destination IP address to which the rule applies; this address is always the public IP address of the edge gateway for which you are configuring the DNAT rule. Type the required IP address.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Select the protocol to which the rule applies.</td>
</tr>
<tr>
<td>Original Port/Range</td>
<td>(Optional) Select the port or port range that the incoming traffic uses on the edge gateway to connect to the internal network on which the virtual machines are connected.</td>
</tr>
</tbody>
</table>
ICMP Type
When you select ICMP (an error reporting and a diagnostic utility used between devices to communicate error information) in the Protocol field, select the ICMP Type from the drop-down menu. ICMP messages are identified by the “type” field. By default, the ICMP type is set to “any.”

Translated IP/Range
Type the IP address or a range of IP addresses to which destination addresses on inbound packets will be translated. These addresses are the IP addresses of the virtual machine (or machines) for which you are configuring DNAT so that they can receive traffic from the external network.

Translated Port/Range
(Optional) Select the port or port range that traffic connects to on the virtual machines on the internal network.

Source NAT (SNAT) (inside -> outside)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Source IP/Range</td>
<td>Type the original IP address or range of IP addresses to apply to this rule. These addresses are the IP addresses of the virtual machine (or machines) for which you are configuring SNAT so that they can send traffic to the external network.</td>
</tr>
<tr>
<td>Translated Source IP/Range</td>
<td>Type the required IP address. Specifies the IP address to which source addresses (the virtual machines) on outbound packets are translated to when they send traffic to the external network. This address is always the public IP address of the gateway for which you are configuring the SNAT rule.</td>
</tr>
</tbody>
</table>

6. (Optional) Type a description for the rule.
7. Select **Enabled** to enable the rule.
8. Select **Enable logging** to log the address translation.
9. Click **OK** to save the rule.

What to do next
Add a corresponding edge gateway firewall rule for the SNAT or DNAT rule you just configured. See “Add an Edge Gateway Firewall Rule,” on page 31.

DHCP Service
The edge gateway supports IP address pooling and one-to-one static IP address allocation. Static IP address binding is based on the managed object ID and interface ID of the requesting client.

The DHCP service for the edge gateway adheres to the following guidelines:
- Listens on the edge gateway internal interface for DHCP discovery.
- Uses the IP address of the internal interface on the edge gateway as the default gateway address for all clients, and the broadcast and subnet mask values of the internal interface for the container network.

You must restart the DHCP service on client virtual machines in the following situations:
- You changed or deleted a DHCP pool, default gateway, or DNS server.
- You changed the internal IP address of the edge gateway instance.
Add a DHCP IP Pool

The DHCP service requires a pool of IP addresses. An IP pool is a sequential range of IP addresses within the network. Virtual machines protected by the edge gateway that do not have an address binding are allocated an IP address from this pool. An IP pool’s range cannot intersect one another, thus one IP address can belong to only one IP pool.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2. Click the DHCP tab and Pools.
3. Click the Add (➕) icon.
 The Add DHCP Pool dialog box appears.
4. Configure the following options for the DHCP pool:

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Configure DNS</td>
<td>Select to use the DNS service configuration for the DHCP binding.</td>
</tr>
<tr>
<td>Lease never expires</td>
<td>Select to bind the address to the MAC address of the virtual machine forever. When you select this option, Lease Time is disabled.</td>
</tr>
<tr>
<td>Start IP</td>
<td>Type the starting IP address for the pool.</td>
</tr>
<tr>
<td>End IP</td>
<td>Type the ending IP address for the pool.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>(Optional) Type the domain name of the DNS server.</td>
</tr>
<tr>
<td>Primary Name Server</td>
<td>(Optional) When you do not select Auto Configure DNS, type the Primary Nameserver for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution.</td>
</tr>
<tr>
<td>Secondary Name Server</td>
<td>(Optional) When you select Auto Configure DNS, type the Secondary Nameserver for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>(Optional) Type the default gateway address. When you do not specify the default gateway IP address, the internal interface of the edge gateway instance is taken as the default gateway.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>(Optional) Select whether to lease the address to the client for the default time (1 day), or type a value in seconds. Note You cannot specify the lease time when you select Lease never expires.</td>
</tr>
</tbody>
</table>

5. Click OK.

Add a DHCP Static Binding

If you have services running on a virtual machine and do not want the IP address to be changed, you can bind an IP address to the MAC address of a virtual machine. The IP address you bind must not overlap an IP pool.

Procedure

1. Log in to vCloud Air and navigate to the vCloud Edge Gateway Services UI. See “Log In and Navigate to Advanced Networking Services,” on page 9 for information.
2. Click the DHCP tab and Bindings.
3 Click the Add (+) icon.

The Add DHCP Binding dialog box appears.

4 Configure the following options for the DHCP bindings:

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Configure DNS</td>
<td>Select to use the DNS service configuration for the DHCP binding.</td>
</tr>
<tr>
<td>Lease never expires</td>
<td>Select to bind the address to the MAC address of the virtual machine forever.</td>
</tr>
<tr>
<td>Interface</td>
<td>Select the edge gateway interface to bind.</td>
</tr>
<tr>
<td>VM Name</td>
<td>Select the virtual machine to bind.</td>
</tr>
<tr>
<td>VM vNIC Index</td>
<td>Select the virtual machine NIC to bind to the IP address.</td>
</tr>
<tr>
<td>Host Name</td>
<td>Type the host name of the DHCP client virtual machine.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Type the address to which to bind the MAC address of the selected virtual machine.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Type the domain name of the DNS server.</td>
</tr>
<tr>
<td>Primary Name Server</td>
<td>When you do not select Auto Configure DNS, type the Primary Name Server for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution.</td>
</tr>
<tr>
<td>Secondary Name Server</td>
<td>When you select Auto Configure DNS, type the Secondary Name Server for the DNS service. You must enter the IP address of a DNS server for hostname-to-IP address resolution.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>Type the default gateway address. If you do not specify the default gateway IP address, the internal interface of the edge gateway instance is taken as the default gateway.</td>
</tr>
<tr>
<td>Lease Time</td>
<td>When you do not select Lease never expires, select whether to lease the address to the client for the default time (1 day), or type a value in seconds.</td>
</tr>
</tbody>
</table>

5 Click OK.
Index

G
glossary 5

I
intended audience 5